请选择 目标期刊

基于对话结构和联合学习的情感和意图分类 下载:42 浏览:235

张伟生 王中卿 李寿山 周国栋 《中文研究》 2020年10期

摘要:
在社交媒体中存在大量的对话文本,而在这些对话中,说话人的情感和意图通常是相关的。不仅如此,对话的整体结构也会影响对话的情感和意图,因此,需要对对话中的情感和意图进行联合学习。为此,该文提出了基于对话结构的情感、意图联合学习模型,考虑对话内潜在的情感与意图的关联性,并且利用对话的内在结构与说话人的情感和意图之间的关系,提升多轮对话文本的每一子句情感及其意图的分类性能。同时,通过使用注意力机制,利用对话的前后联系来综合考虑上下文对对话情感的影响。实验表明,联合学习模型能有效地提高对话子句情感及意图分类的性能。

基于深度学习的关系抽取研究综述 下载:25 浏览:340

庄传志1,2 靳小龙1,2 朱伟建1,2 刘静伟1,2 白龙1,2 程学旗1,2 《中文研究》 2019年12期

摘要:
关系抽取(RE)是为了抽取文本中包含的关系,是信息抽取(IE)的重要组成部分。近年来,研究人员利用深度学习技术在该领域开展了深入研究。由于神经网络类型丰富,基于深度学习的关系抽取方法也更加多样。该文从关系抽取的基本概念出发,对关系抽取方法依据不同的视角进行了类别划分。随后,介绍了基于深度学习的关系抽取方法常用的数据集,并总结出基于深度学习的关系抽取框架。在此框架下,对关系抽取方法在面向深度学习的输入数据预处理、面向深度学习的神经网络模型设计等方面的具体工作进行了分析与评述,最后对未来的研究方向进行了探讨和展望。

基于联合学习的问答情感分类方法 下载:42 浏览:308

安明慧1 沈忱林1 李寿山1 李逸薇2 《中文研究》 2019年4期

摘要:
面向问答型评论的情感分类在情感分析领域是一项新颖且极具挑战性的研究任务。由于问答型评论情感分类标注数据非常匮乏,基于监督学习的情感分类方法的性能有一定限制。为了解决上述困境,该文提出了一种基于联合学习的问答情感分类方法。该方法通过大量自然标注普通评论辅助问答情感分类任务,将问答情感分类作为主任务,将普通评论情感分类作为辅助任务。具体而言,首先通过主任务模型单独学习问答型评论的情感信息;其次,使用问答型评论和普通评论共同训练辅助任务模型,以获取问答型评论的辅助情感信息;最后通过联合学习同时学习和更新主任务模型及辅助任务模型的参数。实验结果表明,基于联合学习的问答情感分类方法能较好融合问答型评论和普通评论的情感信息,大幅提升问答情感分类任务的性能。

基于联合学习的跨领域法律文书中文分词方法 下载:32 浏览:317

江明奇 严倩 李寿山 《中文研究》 2019年3期

摘要:
中文分词任务是自然语言处理的一项基本任务。但基于统计的中文分词方法需要大规模的训练样本,且拥有较差的领域适应性。然而,法律文书涉及众多领域,对大量的语料进行标注需要耗费大量的人力、物力。针对该问题,该文提出了一种基于联合学习的跨领域中文分词方法,该方法通过联合学习将大量的源领域样本辅助目标领域的分词,从而提升分词性能。实验结果表明,在目标领域标注样本较少的条件下,该文方法的中文分词性能明显优于传统方法。

多原型词向量与文本主题联合学习模型 下载:30 浏览:295

曹中华1 夏家莉2 彭文忠1 张志斌1 《当代中文学刊》 2020年6期

摘要:
常见的词嵌入向量模型存在每个词只具有一个词向量的问题,词的主题值是重要的多义性条件,可以作为获得多原型词向量的附加信息。在skip-gram(cbow)模型和文本主题结构基础上,该文研究了两种改进的多原型词向量方法和基于词与主题的嵌入向量表示的文本生成结构。该模型通过联合训练,能同时获得文本主题、词和主题的嵌入向量,实现了使用词的主题信息获得多原型词向量,和使用词和主题的嵌入式向量学习文本主题。实验表明,该文提出的方法不仅能够获得具有上下文语义的多原型词向量,也可以获得关联性更强的文本主题。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享