检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于GMM的文本规则挖掘的粗糙集方法研究
下载:
39
浏览:
341
洪壮壮
黄兆华
万仲保
张薇
高梦茜
《当代中文学刊》
2020年4期
摘要:
领域文本具有结构复杂、相似性高以及动态变化等特点,且存在着连续型与离散型并存的混合数据,这在一定程度上限制了知识发现方法对文本规则的挖掘效率。针对这一问题,该文提出了基于GMM与粗糙集的文本规则挖掘方法。该方法首先根据目标数据的属性类型构造信息表;然后利用高斯混合模型(GMM,Gaussian Mixture Model)聚类算法对连续数据进行聚类划分,依此对数据进行离散化及状态约简,并生成决策表;最后利用粗糙集理论对决策表进行属性约简,通过约简表对决策规则进行提取。实验结果表明:相比于传统的方法,该文方法拥有更高的抽取精度以及较强的属性约简能力,其信息抽取的平均准确率与F1值能够达到95.0%和95.7%。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享