基于融合式神经网络的微生物生长环境关系抽取
李孟颖 王健 王琰 林鸿飞 杨志豪
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

李孟颖 王健 王琰 林鸿飞 杨志豪 ,. 基于融合式神经网络的微生物生长环境关系抽取[J]. 人工智能研究,2019.3. DOI:.
摘要:
为了构建完整的微生物生长环境关系数据库,提出基于卷积神经网络-长短时记忆(CNN-LSTM)的关系抽取系统.结合卷积神经网络(CNN)和长短时记忆(LSTM),实现对隐含特征的深度学习,提取分布式词向量特征和实体位置特征作为模型的特征输入.对比实验验证加入特征后CNN-LSTM模型的优势,并将CNN模型的特征输出作为LSTM模型的特征输入.在Bio-NLP 2016共享任务发布的BB-event语料集上得到目前最好的结果.
关键词: ​卷积神经网络;长短时记忆神经网络;关系抽取
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。