:15:07:58

世纪中文出版社 ——“建设顶级中文期刊”为使命!期待与您同行......
请输入您想了解的内容!
截图后在输入框直接粘贴

请您为我的服务评分:

发送提交
人工智能研究
人工智能研究
《人工智能研究》系开放获取期刊,主要围绕人工智能领域,关注产业政策,报道研究前沿,传播技术趋势,刊载应用案例,推动成果转化,服务我国制造业转型升级发展。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论人工智能领域内不同方向问题与成果的学术交流平台。

ISSN: 3078-9753

《人工智能研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 隐式低秩稀疏表示的多视角子空间聚类 下载:58 浏览:351
  • 张茁涵 曹容玮 李晨 程士卿 《人工智能研究》 2020年7期
  • 摘要:
    针对多视角子空间聚类问题,提出基于隐式低秩稀疏表示的多视角子空间聚类算法(LLSMSC).算法构建多个视角共享的隐式结构,挖掘多视角之间的互补性信息.通过对隐式子空间的表示施加低秩约束和稀疏约束,捕获数据的局部结构和稀疏结构,使聚类结果更准确.同时,使用基于增广拉格朗日乘子交替方向最小化算法高效求解优化问题.在6个不同数据集上的实验验证LLSMSC的有效性和优越性.
  • 基于三维激光雷达的道路边界提取和障碍物检测算法 下载:54 浏览:361
  • 王灿1 孔斌2 杨静2 王智灵3 祝辉3 《人工智能研究》 2020年7期
  • 摘要:
    为了快速有效地提取智能车辆在不同环境下的道路环境信息,提出基于三维激光雷达的道路边界提取和障碍物检测算法.首先,对三维激光雷达点云数据进行栅格化滤波处理,利用单束激光点云空间邻域联合分割的方法进行空间分析,得到点云平滑度特征图像.然后,采用自适应方向搜索算法获取道路边界候选点,并进行聚类分析和曲线拟合.最后,对道路边界约束下可通行区域内点云进行聚类分割,获得道路内障碍物方位和距离信息.实验表明,文中算法能够实时准确地提取道路边界和障碍物位置信息,满足智能车环境建模和路径规划的需求.
  • 基于并行对抗与多条件融合的生成式高分辨率图像修复 下载:52 浏览:373
  • 邵杭 王永雄 《人工智能研究》 2020年7期
  • 摘要:
    现有的图像修复算法经常会有伪影、语义不准等问题出现,对于缺失较大、分辨率较高的图像,修复效果有限.为此,文中提出基于并行对抗与多条件融合的二阶图像修复网络.首先,利用改进的深度残差网络对缺失图像进行生成式像素填充,并利用第一阶对抗网络补全边缘.然后,提取填充图颜色特征,融合补全边缘图,将融合图作为第二阶对抗网络的条件标签.最后,通过带上下文注意力模块的第二阶网络得到修复结果.在多个数据集上的实验表明,文中算法可获得较逼真的修复效果.
  • 基于最大空闲时间的分布式巡逻机器人数量优化 下载:59 浏览:380
  • 赵云涛1,2 李宗刚2 杜亚江2 《人工智能研究》 2020年7期
  • 摘要:
    针对多机器人巡逻问题,提出基于全局平均最大空闲时间的分布式巡逻算法,确保每个巡逻顶点在一定时间内被机器人访问.在算法执行过程中,每个机器人利用共享信息估算全局平均最大空闲时间.机器人在当前顶点收集的信息用于决策、选择下一个被机器人访问的顶点.再根据全局平均最大空闲时间的大小估算在巡逻任务过程中多机器人团队的表现,确定完成此巡逻任务所需的最优机器人数量.仿真实验表明文中算法的收敛速度较快,全局平均最大空闲时间值较小,多机器人巡逻任务完成效果较佳.
  • 基于参考点选择策略的改进型NSGA-III算法 下载:55 浏览:384
  • 耿焕同1,2 戴中斌1 王天雷1 许可1 《人工智能研究》 2020年7期
  • 摘要:
    针对多目标进化算法忽视种群在决策空间的分布信息,未考虑待优化问题Pareto前沿形状的问题,文中提出基于参考点选择策略的改进型NSGA-III算法.首先,根据种群在决策空间的分布特征,借助信息论中的熵思想,计算相邻两代种群的熵差,判定种群的进化阶段.然后,根据种群在目标空间的分布特征,借助参考点关联个体数目的统计信息,评估参考点的重要性.最后,在种群进化的中后期,依据参考点的重要性特征剔除冗余的无效参考点,使保留的参考点适应种群规模与Pareto前沿面,利用筛选后的参考点引导种群进化方向,加快算法收敛及优化效率.在测试函数集上的对比实验表明,文中算法在收敛性和分布性上均较优.
加入编委加入审稿人
人工智能研究  期刊指标
出版年份 2018-2025
发文量 672
访问量 127852
下载量 28651
总被引次数 371
影响因子 0.752
为你推荐