人工智能研究
人工智能研究
《人工智能研究》系开放获取期刊,主要围绕人工智能领域,关注产业政策,报道研究前沿,传播技术趋势,刊载应用案例,推动成果转化,服务我国制造业转型升级发展。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论人工智能领域内不同方向问题与成果的学术交流平台。

ISSN: 3078-9753

《人工智能研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 基于稀疏化双线性卷积神经网络的细粒度图像分类 下载:382 浏览:374
  • 马力1 王永雄2 《人工智能研究》 2019年8期
  • 摘要:
    针对双线性卷积神经网络(B-CNN)在细粒度图像分类中因参数过多、复杂度过高而导致的过拟合问题,提出稀疏化B-CNN.首先对B-CNN的每个特征通道引入比例因子,在训练中采用正则化方法对其稀疏.然后利用比例因子的大小判别特征通道的重要性.最后将不重要特征通道按一定比例裁剪,消除网络过拟合,提高关键特征的显著性.稀疏化B-CNN属于弱监督学习,可实现端到端训练.在FGVC-aircraft、Stanford dogs、Stanford cars这3个细粒度图像数据集上的实验表明,稀疏化B-CNN的准确率高于B-CNN,也优于或基本接近其它通用的细粒度图像分类算法.
  • 基于强化学习的数据驱动最优镇定控制及仿真 下载:75 浏览:376
  • 陆超伦 李永强 冯远静 《人工智能研究》 2019年8期
  • 摘要:
    利用Q-学习算法,针对模型未知只有数据可用的非线性被控对象,解决最优镇定控制问题.由于状态空间和控制空间的连续性,Q-学习只能以近似的方式实现.因此,文中提出的近似Q-学习算法只能获得一个次优控制器.尽管求得的控制器只是次优,但是仿真研究表明,对于强非线性被控对象,相比线性二次型调节器和深度确定性梯度下降方法,文中方法的闭环吸引域更宽广,实际指标函数也更小.
  • 基于深度学习的芯片图像超分辨率重建 下载:67 浏览:382
  • 范明明1 池源2 张铭津1 李云松1 《人工智能研究》 2019年8期
  • 摘要:
    考虑到卷积神经网络可以通过训练过程引入图像的先验知识,文中提出基于深度学习的芯片图像超分辨率重建.利用卷积神经网络改善迭代反投影法的初始估计图像,通过迭代过程引入图像序列间的互补信息,建立芯片图像的样本集.实验表明,在不同放大倍数下,改进算法的客观评价指标平均值均较高,在芯片图像中的电路密集处,改进算法的主观视觉感受也较好.同时,文中算法适用于自然图像.
  • 融合深度学习和语义树的草图识别方法 下载:78 浏览:373
  • 赵鹏 冯晨成 韩莉 纪霞 《人工智能研究》 2019年8期
  • 摘要:
    现有的草图识别框架利用整幅图像作为网络输入,草图识别过程可解释性较差.文中融合深度学习和语义树,提出草图语义网(Sketch-Semantic Net).首先对草图进行部件分割,将单幅完整的草图分割为多个具有语义概念的部件图.然后利用深度迁移学习识别草图部件.最后通过语义树的语义概念关联部件同部件所属草图对象类别,较好地弥补sketch图像从底层语义到高层语义之间的语义鸿沟.在广泛应用的草图分割数据集上的实验验证文中方法的有效性.
  • 基于字符级截断式循环神经网络的人名国籍识别 下载:376 浏览:385
  • 张钰莎1 张礼明2 蒋盛益2 《人工智能研究》 2019年8期
  • 摘要:
    人名是反映用户国籍的关键信息,不同国籍的人名在结构和组成成分方面存在差异性和关联性.目前,基于人名的国籍识别研究工作大部分将人名切分成多个独立的字符单元,忽略字符间微妙的搭配和序列关系.针对上述问题,文中提出基于字符级截断式循环神经网络的人名国籍识别模型,将人名通过滑动窗口的方式截断成多个子序列,利用长短期记忆单元模型学习不同子序列内部的字符组合关系,通过平均池化操作聚合所有子序列信息,获取最终的人名向量表示.最后根据该人名向量实现用户的国籍识别.截断式的子序列有利于模型更关注人名内部的细微差异.在Olympic运动员和Aminer学者数据集上的实验表明,文中模型性能较优.
加入编委加入审稿人
人工智能研究  期刊指标
出版年份 2018-2025
发文量 672
访问量 127852
下载量 28651
总被引次数 371
影响因子 0.752
为你推荐