请选择 目标期刊
最新录用
基于transformer神经网络的汉蒙机构名翻译研究 下载:52 浏览:467
摘要:
机构名翻译是机器翻译的研究内容之一,在机器翻译任务中机构名翻译的准确度,直接影响着翻译性能。在很多任务上,神经机器翻译性能优于传统的统计机器翻译性能,该文中使用基于transformer神经网络模型与传统的基于短语的统计机器翻译模型和改进后的基于语块的机器翻译模型做了对比试验。实验结果表明,在汉蒙机构名翻译任务上,基于transformer神经网络的汉蒙机构名翻译系统优于传统的基于语块的汉蒙机构名翻译系统,BLEU4值提高了0.039。
网络表示学习算法的分析与验证 下载:40 浏览:431
摘要:
网络表示学习算法是社交网络分析领域的一个热点问题。该文旨在研究现有的各种网络表示学习算法,并分析各类算法在不同结构的网络数据中的性能,对3大类别、共10种网络表示学习算法在8个网络上进行了网络节点的多标签分类以验证算法的性能,以此来全面评价各类算法的效果、效率和应用范围。实验结果表明,DeepWalk这种流行的深度学习算法在各种类型的网络中有着稳定而较好的效果。而基于矩阵分解算法的应用,则受限于其较高的空间复杂度。
基于领域情感词典特征表示的细粒度意见挖掘 下载:24 浏览:335
摘要:
细粒度意见挖掘的主要目标是从观点文本中获取情感要素并判断情感倾向。现有方法大多基于序列标注模型,但很少利用情感词典资源。该文提出一种基于领域情感词典特征表示的细粒度意见挖掘方法,使用领域情感词典在观点文本上构建特征表示并将其加入序列标注模型的输入部分。首先构建一份新的电商领域情感词典,然后在电商评论文本真实数据上,分别为条件随机场(CRF)和双向长短期记忆-条件随机场(BiLSTM-CRF)这两种常用序列标注模型设计基于领域情感词典的特征表示。实验结果表明,基于电商领域情感词典的特征表示方法在两种模型上都取得了良好的效果,并且超过其他情感词典。
基于多任务学习的汉语基本篇章单元和主述位联合识别 下载:51 浏览:373
摘要:
基本篇章单元(elementary discourse units,EDU)识别是构建篇章结构的基础,对篇章分析意义重大。从篇章衔接性视角来看,篇章话题结构理论认为,每个EDU都由要表达信息的起始点(主位)和传达的新信息(述位)两部分构成。因此,EDU识别与主述位识别任务的关系密切。基于此,该文给出了一个基于多任务学习的汉语基本篇章单元和主述位联合识别方法。该方法利用双向长短时记忆网络和图卷积网络对基本单元进行序列化和结构化拓扑信息的表征,再利用多任务学习框架让两个任务共享参数,借助不同任务间的相关性来提升模型的性能。实验结果表明,基于多任务学习的EDU和主述位识别性能均优于单任务学习模型中各自的性能,其中基本篇章单元识别的F1值达到91.90%,主述位识别的F1值达到85.65%。
采用Stack-Tree LSTM的汉语一体化依存分析模型 下载:41 浏览:402
摘要:
在汉语一体化依存分析中,如何利用分词、词性标注和句法分析的中间结果作为分析特征成为核心问题,也是三个任务相互制约协调、共同提高性能的关键所在。目前无论基于特征工程的方法还是基于深度学习的方法尚无法充分利用分析过程中依存子树的完整信息,而依存子树作为中间结果的主要成分对三个任务的后续分析具有重要的指导意义。该文在基于转移的依存分析框架下,提出Stack-Tree LSTM依存子树编码方法,通过对分析栈中所有依存子树的有效建模,获取任意时刻的依存子树的完整信息作为特征参与转移动作决策。利用该编码方式提出词性特征使用方法,融合N-gram特征构建汉语一体化依存分析神经网络模型。最后在宾州汉语树库上进行了验证实验,并与已有方法进行了比较。实验结果显示:该文提出的模型在分词、词性标注和依存分析任务上的性能非常接近特征工程最好的结果,并且均超过已有的一体化依存分析神经网络模型。
基于胶囊网络的药物相互作用关系抽取方法 下载:45 浏览:422
摘要:
药物相互作用是指药物之间存在的抑制或促进等作用。针对目前药物关系抽取模型在长语句中抽取效果较差以及高层特征信息丢失的问题,该文提出了一种结合最短依存路径的胶囊网络关系抽取模型,该方法首先根据原语句解析出两个药物之间的最短依存路径,然后利用双向长短期记忆网络分别获取原语句和最短依存路径的低层语义表示,再将两者结合输入到胶囊网络中,利用胶囊网络的动态路由机制,动态地决定低层胶囊向高层胶囊传送的信息量,避免了高层特征信息丢失的问题,从而提升抽取效果。在DDIExtraction 2013药物相互作用关系抽取任务上的实验结果表明,该文方法的F1值优于目前最优方法1.17%。
基于双向LSTM与CRF融合模型的否定聚焦点识别 下载:43 浏览:487
摘要:
否定表达作为自然语言文本中常见的语言现象,对自然语言处理上层应用,如情感分析、信息抽取等,具有十分重要的意义。否定聚焦点识别任务是更细粒度的否定语义分析,其旨在识别出句子中被否定词修饰和强调的文本片段。该文将该任务作为序列标注问题,提出了一种基于双向长短期记忆网络结合条件随机场(BiLSTMCRF)的否定聚焦点识别模型,其中,BiLSTM网络能够充分利用上下文信息并抓取全局特征,CRF层能够有效学习输出标签之间的前后依赖关系。在*SEM2012评测任务数据集上的实验结果表明,基于BiLSTM-CRF的否定聚焦点识别方法的准确率(accuracy)达到69.58%,与目前最好的系统相比,性能提升了2.44%。
基于RNN的中文二分结构句法分析 下载:26 浏览:372
摘要:
为了构建一个简单易扩展的中文句法分析器,我们依据朱德熙和陆俭明先生的中文二分结构的层次分析句法理论,手工构建了一个3万句的二分结构的中文句法树库,并使用哈夫曼编码方式来简化表示完全二叉树的层次结构。该文将中文句法分析转换为迭代二分的序列标注问题,并根据该任务的特点,提出了在词的间隔上进行标记的序列标注模型(RNN-Interval,RNN-INT),与常用的循环神经网络模型(RNN,LSTM)和条件随机场模型(CRF)进行对比实验,使用mx2交叉验证序贯t-检验来比较模型。实验结果表明,RNN-INT模型在窗口为1的词特征就可达到最好的性能,并好于其他窗口大小和其他序列标注模型(RNN,LSTM,CRF)。最后,在测试集上,在人工分词下,RNN-INT在短语级别的F1值(块F1)达到71.25%,在句子级别的准确率达到约43%。
融合反问特征的卷积神经网络的中文反问句识别 下载:23 浏览:369
摘要:
反问是一种带有强烈情感色彩的表达方式,对其进行自动识别将提升隐式情感分析的整体效率。针对汉语反问句识别问题,该文分析了反问句的句式特点,将反问句的句式结构融入到卷积神级网络的构建中,提出一种融合句式结构的卷积神经网络的反问句识别方法。首先利用置信度大于70%的反问句的特征词、序列模式,对大规模未被标注的微博语料进行初步筛选,获取大量伪反问句。然后通过多个卷积核分别对句子的词向量和反问句的特征进行抽取,获取句子语义特征和反问词特征,将两者共同作用生成句子的表示。最后利用softmax分类器实现句子的分类。实验结果表明,利用该方法对微博中反问句的识别准确率、召回率和F1值分别达到了89.5%、84.2%和86.7%。
融入丰富信息的高性能神经实体链接 下载:49 浏览:468
摘要:
歧义的存在使得实体链接任务需要大量信息的支撑。已有研究主要使用两类信息,即实体表述所在的文本信息和外部的知识库信息。但已有研究对信息的使用存在以下两个问题:首先,最新通用知识库规模更大、覆盖面更广,但目前的实体链接模型却未从中受益,其性能没有得到相应提升;其次,表述所在的文本信息既包含表述所处的局部上下文信息,也包含文本主题之类的全局信息,文本自身信息的利用率还需进一步提高。针对第一个问题,该文给出了一个融合文本相关度和先验知识的实体候选集抽取策略,提高了对知识库中有效知识的提取;针对第二个问题,该文给出了一个融合局部和全局信息的自注意力机制与高速网络相结合的神经网络实体链接框架。在6个实体链接公开数据集上的对比实验表明了该文提出方案的有效性,在最新的通用知识库上该文给出的实体链接模型取得了目前最好的性能。
基于篇章修辞结构的自动文摘连贯性研究 下载:43 浏览:274
摘要:
尽管抽取式自动文摘方法是目前自动文摘领域的主流方法,并且取得了长足的进步,但抽取式自动文摘形成的摘要由于缺乏句子之间的合理指代或篇章结构,使得文摘缺乏连贯性而影响可读性。为提高自动摘要的可读性,该文尝试将篇章修辞结构信息应用于中文自动文摘。首先,基于汉语篇章修辞结构抽取摘要,然后使用基于LSTM的方法对文本连贯性进行建模,并使用该模型对文摘的连贯性做出评价。实验结果表明:在摘要抽取方面,基于篇章修辞结构的自动文摘相比于传统的抽取方法具有更好的ROUGE评价值;在使用基于LSTM连贯性模型评价摘要连贯性方面,篇章结构信息在自动抽取文摘时可以很好地提炼出文章的主旨,同时使摘要具有更好的结果。
基于神经主题模型的对话情感分析 下载:54 浏览:410
摘要:
对话情感分析旨在识别出一段对话中每个句子的情感倾向,其在电商客服数据分析中发挥着关键作用。不同于对单个句子的情感分析,对话中句子的情感倾向依赖于其在对话中的上下文。目前已有的方法主要采用循环神经网络和注意力机制建模句子之间的关系,但是忽略了对话作为一个整体所呈现的特点。建立在多任务学习的框架下,该文提出了一个新颖的方法,同时推测一段对话的主题分布和每个句子的情感倾向。对话的主题分布,作为一种全局信息,被嵌入到每个词以及句子的表示中。通过这种方法,每个词和句子被赋予了在特定对话主题下的含义。在电商客服对话数据上的实验结果表明,该文提出的模型能充分利用对话主题信息,与不考虑主题信息的基线模型相比,Macro-F1值均有明显提升。
子字粒度切分在蒙汉神经机器翻译中的应用 下载:25 浏览:386
摘要:
在蒙汉神经机器翻译任务中,由于语料稀少使得数据稀疏问题严重,极大影响了模型的翻译效果。该文对子字粒度切分技术在蒙汉神经机器翻译模型中的应用进行了研究。通过BPE算法将切分粒度控制在字符和词之间的子字粒度大小,将低频词切分成相对高频的子字片段,来缓解数据稀疏问题,从而在有限的数据和硬件资源条件下,更高效地提升模型的鲁棒性。实验表明,在两种网络模型中使用子字粒度切分技术,BLEU值分别提升了4.81和2.96,且随着语料的扩大,训练周期缩短效果也更加显著,说明子字粒度切分技术有助于提高蒙汉神经机器翻译效果。
融合深度匹配特征的答案选择模型 下载:42 浏览:469
摘要:
答案选择是自动问答系统中的关键任务之一,其主要目的是根据问题与候选答案的相似性对候选答案进行排序,并选择出相关性较高的答案返回给用户。可将其看作成一个文本对的匹配问题。该文利用词向量、双向LSTM、2D神经网络等深度学习模型对问题—答案对的语义匹配特征进行了提取,并将其与传统NLP特征相结合,提出一种融合深度匹配特征的答案选择模型。在Qatar Living社区问答数据集上的实验显示,融合深度匹配特征的答案选择模型比基于传统特征的模型MAP值高5%左右。
基于注意力机制的上下文相关的问答配对方法 下载:24 浏览:392
摘要:
目前,关于问答的大部分研究都是面向正式文本的问答对。然而,与以往研究不同的是,该文关注于社会媒体上存在的非正式文本问答对。非正式文本会存在问题文本里包含多个问题以及回答文本里包含多个回答的情况。针对该情况,我们提出了一个新的任务:问答配对,即对问题文本的每个问题,从答案文本中找到和该问题相关的句子。首先,我们从产品问答网站上收集了大规模非正式文本问答对,并在此基础上创建了一个产品问答配对语料库。其次,为了解决非正式文本中存在的噪声问题,提出了一种基于注意力机制的上下文相关的问答配对方法。实验结果表明,该文提出的方法能有效地提升非正式文本的问答配对的性能。
融合卷积神经网络与层次化注意力网络的中文文本情感倾向性分析 下载:43 浏览:272
摘要:
文本情感倾向性分析是自然语言处理研究领域的一个基础问题。基于深度学习的模型是处理此问题的常用模型。而当前的多数深度学习模型在中文文本情感倾向性分析方面的应用存在两个问题:一是未能充分考虑到文本的层次化结构对情感倾向性判定的重要作用,二是传统的分词技术在处理文本时会产生歧义。该文针对这些问题基于卷积神经网络与层次化注意力网络的优点提出了一种深度学习模型C-HAN(Convolutional Neural Network-based and Hierarchical Attention Network-based Chinese Sentiment Classification Model),先用并行化卷积层学习词向量间的联系与组合形式,再将其结果输入到基本单元为双向循环神经网络的层次化注意力网络中判定情感倾向。实验表明:模型在中文评论数据集上倾向性分类准确率达到92.34%,和现有多个情感分析模型相比有所提升;此外,对于中文文本,选择使用字级别词向量作为原始特征会优于词级别词向量作为原始特征。
基于BiLSTM-CRF模型的汉语否定信息识别 下载:21 浏览:462
摘要:
该文提出了基于小波分析的文本特征提取方法,对传统TF-IDF向量空间模型下的特征向量进行了该文的小波变换、逆小波变换。使用KNN分类方法检验这两空间下的文本分类准确率。实验结果表明,该文的小波变换方法在减少了TF-IDF向量空间模型近一半的维度下在各种实验条件中都能和向量空间模型保持一致的分类准确率;该文的逆小波变换方法在大幅度降低TF-IDF向量空间模型维度的基础上,同实验中其他特征提取方法相比,在特定条件下有着卓越的特定文本类别分类优势,这也在一定程度上检验了压缩感知理论的正确合理性。
基于小波分析的特征提取文本分类方法研究 下载:43 浏览:271
摘要:
该文提出了基于小波分析的文本特征提取方法,对传统TF-IDF向量空间模型下的特征向量进行了该文的小波变换、逆小波变换。使用KNN分类方法检验这两空间下的文本分类准确率。实验结果表明,该文的小波变换方法在减少了TF-IDF向量空间模型近一半的维度下在各种实验条件中都能和向量空间模型保持一致的分类准确率;该文的逆小波变换方法在大幅度降低TF-IDF向量空间模型维度的基础上,同实验中其他特征提取方法相比,在特定条件下有着卓越的特定文本类别分类优势,这也在一定程度上检验了压缩感知理论的正确合理性。
基于BiLSTM-CRF模型的汉语否定信息识别 下载:36 浏览:297
摘要:
否定信息识别是将自然语言中的肯定信息与否定信息分离,它对信息检索、文本挖掘、情感分析等都有重要作用。该文主要对汉语否定信息中的触发词识别和覆盖域识别进行研究,采用双向长短期记忆网络结合条件随机场(BiLSTM-CRF)为模型,预训练的词向量为输入特征对触发词进行识别,在此基础上添加已知触发词特征对覆盖域进行识别。中文否定与不确定信息语料上,触发词识别取得F1值为91.03%,覆盖域识别在该语料的子语料财经新闻上取得F1值最高为73.91%。实验结果表明,这一模型在汉语否定触发词识别和覆盖域识别上取得的效果优于CRF模型和BiLSTM模型。
基于细粒度词表示的命名实体识别研究 下载:43 浏览:255
摘要:
命名实体识别(NER)是自然语言处理中的一项基础任务,其性能的优劣极大地影响着关系抽取、语义角色标注等后续任务。传统的统计模型特征设计难度大、领域适应性差,一些神经网络模型则忽略了词本身所具有的形态学信息。针对上述问题,该文构建了一种基于细粒度词表示的端到端模型(Finger-BiLSTM-CRF)来进行命名实体识别任务。该文首先提出一种基于注意力机制的字符级词表示模型Finger来融合形态学信息和单词的字符信息,然后将Finger与BiLSTM-CRF模型联合进行实体识别,最终该方法以端到端、无任何特征工程的方式在CoNLL 2003数据集上取得了F1为91.09%的结果。实验表明,该文设计的Finger模型显著提升NER系统的召回率,从而使得模型的识别能力显著提升。

版权所有 © 2025 世纪中文出版社  京ICP备2024086036号-2