请选择 目标期刊

新冠肺炎疫情对电网运行的影响分析 下载:25 浏览:314

董靓媛 于腾凯 胡文平 李铁成 李晓明 张蕊 《中国电力技术》 2020年6期

摘要:
针对新冠肺炎疫情前后2个月某省级电网运行数据,分析疫情对电力供需及调度运行的影响,并结合历年GDP与负荷变化趋势,基于长短期记忆网络建立负荷预测模型,预测2020年各季度高峰负荷,为某省级电网运行方式制定提供参考依据。

部首感知的中文医疗命名实体识别 下载:69 浏览:437

李丹1,2 徐童1,2 郑毅3王喆锋3 陈恩红1,2 《中文研究》 2020年9期

摘要:
人工智能技术的发展推动了医疗领域的智能化,为提升医疗效率、改善医疗水平提供了新的助力。同时,这一新的趋势也催生了海量的电子病历文本,其所蕴含的丰富信息具有巨大的潜在挖掘与应用价值。然而,当前中文电子病历的命名实体识别研究工作并没有全面考虑中文及中文医疗领域的特殊性,而是将面向通用数据集的模型迁移到医疗领域的实体类型中,分析效果较为有限。针对这一问题,该文设计了长短期记忆网络与条件随机场的联合模型并引入BERT模型;在此基础之上,考虑到医疗领域命名实体鲜明的部首特征,通过将部首信息编码到字向量中,并且结合部首信息修改条件随机场层得分函数的计算方式,有效地提升了医疗领域命名实体的抽取能力。通过两项电子病历数据集的实验结果表明,该文提出的模型整体效果略高于通用的实体识别模型,并对疾病诊断等特定类型的实体词的识别效果具有较为明显的提升。

融合注意力LSTM的协同过滤推荐算法 下载:17 浏览:413

罗洋1 夏鸿斌1,2 刘渊1,2 《中文研究》 2019年10期

摘要:
针对传统协同过滤算法难以学习深层次用户和项目的隐表示,以及对文本信息不能充分提取单词之间的前后语义关系的问题,该文提出一种融合辅助信息与注意力长短期记忆网络的协同过滤推荐模型。首先,附加堆叠降噪自编码器利用评分信息和用户辅助信息提取用户潜在向量;其次,基于注意力机制的长短期记忆网络利用项目辅助信息来提取项目的潜在向量;最后,将用户与项目的潜在向量用于概率矩阵分解中,从而预测用户偏好。在两个真实数据集MovieLens-100k和MovieLens-1M上进行实验,采用RMSE和Recall指标进行评估。实验结果表明,该模型与其他相关推荐算法相比在推荐性能上有所提升。

基于多通道双向长短期记忆网络的情感分析 下载:16 浏览:318

李卫疆 漆芳 《中文研究》 2019年10期

摘要:
当前存在着大量的语言知识和情感资源,但在基于深度学习的情感分析研究中,这些特有的情感信息,没有在情感分析任务中得到充分利用。针对以上问题,该文提出了一种基于多通道双向长短期记忆网络的情感分析模型(multi-channels bidirectional long short term memory network,Multi-Bi-LSTM),该模型对情感分析任务中现有的语言知识和情感资源进行建模,生成不同的特征通道,让模型充分学习句子中的情感信息。与CNN相比,该模型使用的Bi-LSTM考虑了词序列之间依赖关系,能够捕捉句子的上下文语义信息,使模型获得更多的情感信息。最后在中文COAE2014数据集、英文MR数据集和SST数据集进行实验,取得了比普通Bi-LSTM、结合情感序列特征的卷积神经网络以及传统分类器更好的性能。

基于多特征自注意力BLSTM的中文实体关系抽取 下载:33 浏览:343

李卫疆 李涛 漆芳 《中文研究》 2019年6期

摘要:
实体关系抽取解决了原始文本中目标实体之间的关系分类问题,同时也被广泛应用于文本摘要、自动问答系统、知识图谱、搜索引擎和机器翻译中。由于中文句式和语法结构复杂,并且汉语有更多歧义,会影响中文实体关系分类的效果。该文提出了基于多特征自注意力的实体关系抽取方法,充分考虑词汇、句法、语义和位置特征,使用基于自注意力的双向长短期记忆网络来进行关系预测。在中文COAE 2016Task 3和英文SemEval 2010Task 8数据集上的实验表明该方法表现出了较好的性能。

基于句内注意力机制多路CNN的汉语复句关系识别方法 下载:38 浏览:305

孙凯丽1 邓沌华2 李源1 李妙1 李洋1 《当代中文学刊》 2020年11期

摘要:
复句的关系识别是对分句间语义关系的甄别,是复句语义分析的关键,旨在从文本中识别句间的关系类型。非充盈态汉语复句存在隐式关系的特点给语义关系识别造成了困难。为了深度挖掘复句中隐含的语义信息,正确地实现关系分类,该文提出了一种基于句内注意力机制的多路CNN网络结构Inatt-MCNN。其中句内注意力机制模型是基于Bi-LSTM的,使其能够学习到句子的双向语义特征以及分句间的关联特征。同时,为了充分利用文本特征,联合使用卷积神经网络(CNN)对复句表示再次建模获得句子局部特征。与其他基于汉语复句语料库(CCCS)和清华汉语树库(TCT)的实验结果相比,该文方法的宏平均F1值为85.61%,提升约6.08%,平均召回率为84.87%,提升约3.05%。

基于序列标注的引语识别初探 下载:49 浏览:470

贾泓昊 罗智勇 《当代中文学刊》 2019年7期

摘要:
句间引用关系自动识别是篇章分析中一项重要内容。句间引用关系影响着对句群篇章的分析,而目前自然语言处理中对引用这一句间关系的研究较少。句间引用关系主要体现在引语中的引用句上。引语由引导句和引用句组成,一般分为直接引语和间接引语,其中间接引语的识别难度最大。引导句和引用句相对位置不定、不同领域语料的引语与非引语比例极不均衡等进一步增加了引语自动识别的难度。该文主要尝试对引用这一句间关系进行初步探索,采用条件随机场(CRF)以及双向长短期记忆网络与条件随机场相结合(BLSTM-CRF)的方法对引语进行自动识别,并引入引导句中管领词特征进行实验对比。实验结果表明,CRF模型和BLSTM-CRF模型对引语的识别精确率分别达到85.49%和80.19%,F值分别达到78.75%和79.60%。

基于稀疏DBN和双向LSTM的视觉语音识别算法 下载:63 浏览:429

王一鸣 陈恳 《数据与科学》 2019年7期

摘要:
唇部视觉信息作为语音识别的辅助信息一直受到广泛关注,为更好的提取唇部视觉信息,提出一种基于稀疏深度信念网络(Deep Belief Network,DBN)和双向长短期记忆网络(Bidirectional Long Short-Term Memory,Bi LSTM)的视觉语音识别算法。该算法通过在DBN的目标函数后引入混合的l1/2范数和l1范数来实现DBN的稀疏表示,以此稀疏DBN对唇部视觉信息进行稀疏瓶颈特征的提取,再将提取的瓶颈特征送入Bi LSTM进行特征的学习分类。实验表明,该算法能有效的识别唇部视觉信息。

基于Wide&Deep-LSTM模型的短期台区负荷预测 下载:81 浏览:436

吕海灿1 王伟峰1 赵兵2 张毅3 郭秋婷3 胡伟3 《电网技术研究》 2020年7期

摘要:
负荷预测是电力系统经济运行的基础,其对电力系统规划和运行都极其重要。由于影响负荷预测的因素较多,因此用常规的方法很难获得较好的预测结果。随着新一代人工智能技术的兴起,尤其以深度学习和大数据技术的快速发展,为进一步提高负荷预测的精确度奠定了良好的基础。文中将深度学习方法引入到电力系统的短期台区负荷预测中,综合利用了负荷台区的电压、电流、功率以及时间等特征信息。同时在已有的长短期记忆网络(LSTM)模型和宽度&深度(Wide&Deep)模型的基础上,建立了基于Wide&DeepLSTM的深度学习短期负荷预测模型,并在此基础上进行了日前台区负荷预测。该模型能够兼具深度神经网络的学习能力与LSTM模块的时间序列信息表达特性,能够较好地解决台区电力负荷预测的多特征维度及时序性特征问题。最后利用Tensorflow深度学习框架生成了仿真模型并加以验证,仿真结果充分证明了所提方法的准确性与实用性。

数据驱动下的虚拟同步发电机等效建模 下载:76 浏览:449

杨斌 杜文娟 王海风 《电网技术研究》 2020年4期

摘要:
为了适应电力电子化发展的趋势,同时在建模时考虑电力电子逆变器的高频开关状态的影响,提出了一种基于长短期记忆网络(longshort-termmemory,LSTM)的虚拟同步发电机数据驱动建模方法。通过简化虚拟同步发电机的数学机理模型,着重关注各电气量之间的数据映射关系,构建基于LSTM网络的数据驱动模型,实现了由当前时刻电气量预测下一时刻输出的动态建模。为了验证所提模型的有效性,通过搭建仿真模型,对比了不同神经网络方法以及理论方法的差异性。仿真结果表明,所提模型能够反映虚拟同步机不同运行工况下的动态特性,具有良好的稳定性与泛化性,为电力电子化建模提供了一种有效的解决思路。

基于自注意力机制和CNN-LSTM深度学习的对虾投饵量预测模型 下载:48 浏览:316

何津民1 张丽珍1,2 《中国水产学报》 2022年4期

摘要:
为提高对虾饲料的利用率,减少养殖成本,提高养殖效益,提出了一种基于自注意力机制(self-attention, ATTN)和卷积神经网络(convolutional neural network, CNN)-长短期记忆网络(long short term memory, LSTM)的对虾投饵量预测模型(CNN-LSTM-ATTN),以水温、溶解氧、对虾的数量与质量作为预测模型的输入数据,通过CNN挖掘输入数据间的内在联系,提取出数据特征信息,利用LSTM的长期记忆能力保存数据特征信息,使用ATTN突出不同时间节点数据特征的重要性,进一步提升模型的性能。结果表明,本研究中提出的CNN-LSTM-ATTN预测模型的均方根误差、平均绝对误差和平均绝对百分误差分别为0.816、0.681和0.018,均小于BP(back propagation)神经网络、LSTM和CNN-LSTM 3个基准模型,其模型预测能力和稳定性优于其他模型。研究表明,本研究中构建的模型能较好地实现对虾投饵量的准确预测,可为对虾养殖投饵量的管理调控提供参考依据。

一种基于循环神经网络的住户级短期负载预测方法 下载:166 浏览:1997

宋子豪 《神经科学研究》 2023年2期

摘要:
随着智能电表的发展,对区域级、建筑级的负载预测准确度逐步提高,但在住户级负载预测领域,因其突变性、波动性更强,该领域仍面临着巨大挑战。为了解决这些问题,提出多重检测长短期记忆模(Multi-detection-LSTM),即在传统聚类方法上引入深度学习领域的LSTM模型,使其面对不同的住户数据时能自适应其用电习惯,对单户人家用电量进行精准预测。与传统模型相比,Multi-detection-LSTM有效的消除了住户级负载预测面临的波动性问题,具有更高的准确度。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享