影像组学模型对高血压脑出血早期血肿扩大的预测作用研究
​杨俊 侯自明 王浩 刘东远 康慧斌 侯哲 王森 张洪兵
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

​杨俊 侯自明 王浩 刘东远 康慧斌 侯哲 王森 张洪兵,. 影像组学模型对高血压脑出血早期血肿扩大的预测作用研究[J]. 神经科学研究,2019.1. DOI:.
摘要: 构建一个预测高血压脑出血早期血肿扩大的影像组学模型并探讨其预测价值。方法 对北京潞河医院神经外科自2010年2月至2018年8月收治的发病6 h内的212例高血压脑出血患者于入院后0.5 h内行头颅CT检查,于入院后24 h内行头颅CT复查,依据血肿体积差异判断有无血肿扩大。在首次CT资料上勾画感兴趣区域,应用Matlab软件从中提取431个影像学特征,通过最小绝对收缩与选择算子(LASSO)回归模型筛选出预测效果最强的影像学特征,进一步用所选特征和支持向量机分类器(SVM)构建预测模型。使用受试者工作特征曲线(ROC)评价预测模型的预测效果。结果 头颅CT复查发现血肿扩大发生率为18.9%(40/212)。通过LASSO回归模型筛选出18个影像学特征[图像灰度基本特征4个(标准差、峰度、能量、方差),图像形状和体积特征1个(表面和体积比),纹理类特征7个(长行程低灰度优势、惯性、90°相关性、短行程优势、全角相关性、长行程优势、逆差距),小波特征6个(自相关3、相关信息测度23、长行程高灰度优势4、短行程高灰度优势4、短行程低灰度优势7、总变异3)],并结合SVM构建了预测模型。预测模型的ROC曲线下面积为0.928,敏感性和特异性分别为92.5%、83.5%。结论 构建的影像组学模型有助于对高血压脑出血早期血肿扩大进行预测。
关键词: 高血压脑出血;血肿扩大;影像组学;预测模型
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。