:01:55:53

世纪中文出版社 ——“建设顶级中文期刊”为使命!期待与您同行......
请输入您想了解的内容!
截图后在输入框直接粘贴

请您为我的服务评分:

发送提交
中文研究
中文研究
《中文研究》系开放获取期刊,本刊旨在为从事语言文字研究的教学、科研工作者及语言文字爱好者提供优秀的精神产品。以传承文明,传承学术为使命,提倡学术创新,反映国内外本学科的最新研究成果。以繁荣人文社会科学研究,服务学科建设与发展,提升社会精神文明生态为办刊方针。

ISSN: 3007-9896

《中文研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 基于RNN和CNN的蒙汉神经机器翻译研究 下载:62 浏览:437
  • 包乌格德勒1,2 赵小兵2 《中文研究》 2018年2期
  • 摘要:
    该文探讨了基于RNN和CNN的蒙汉神经机器翻译模型,分别采用蒙古语的词模型、切分模型和子词模型作为翻译系统的输入信号,并与传统的基于短语的SMT进行了比较分析。实验结果表明,子词模型可以有效地提高RNN NMT和CNN NMT的翻译质量。同时实验结果也表明,基于RNN的蒙汉NMT模型的翻译性能已经超过传统的基于短语的蒙汉SMT模型。
  • 基于门控循环神经网络词性标注的蒙汉机器翻译研究 下载:68 浏览:450
  • 刘婉婉 苏依拉乌尼尔仁庆道尔吉 《中文研究》 2018年2期
  • 摘要:
    统计机器翻译可以通过统计方法预测出目标词,但没有充分理解原文语义关系,因而得到的译文质量不高。针对该问题,利用一种基于门控单元循环神经网络结构来对蒙汉神经机器翻译系统进行建模,引入注意力机制来获取双语词语的对齐信息,并在构建字典过程中对双语词语进行词性标注来强化语义,以此来缓解因欠训练导致的错译问题。实验结果表明,与RNN的基准系统和传统的统计机器翻译方法相比,该方法 BLEU值得到一定的提升。
  • 哈萨克语句法分析辅助特征提取研究 下载:63 浏览:290
  • 陈雪古丽拉·阿东别克 《中文研究》 2018年2期
  • 摘要:
    在哈萨克语句法分析中,该文用平均感知器算法训练句法分析模型,用柱搜索算法进行解码,可以快速准确地对哈萨克语句子进行短语结构句法分析。在解析句子过程中,构建了一个双向LSTM模型,利用它提取句子中每个单词之间组成结构的信息,以预测每个单词在句法树中的句法组成部分,然后将结果作为辅助前瞻特征传递给句法分析过程。实验证明,此方法与基线模型相比,在准确率和召回率上均有提高。
  • 基于Bi-tagged特征的维吾尔文情感分类方法研究 下载:55 浏览:420
  • 热西旦木·吐尔洪太1,2 吾守尔·斯拉木1 《中文研究》 2018年2期
  • 摘要:
    现有的维吾尔文文本情感分类方法以从空格分词中得到的unigram特征作为文本表示,因而无法挖掘与情感表达相关的深层语言现象。该文从维吾尔文词汇之间的顺序依赖关系入手,总结若干个词性组合规则,提取能够表达丰富情感信息的Bi-tagged特征,并基于支持向量机(SVM)分类器对维吾尔文情感语料库进行了正负情感分类。实验结果表明,在维吾尔文文本情感分类中:(1)当包含该文提出的各项词性规则时,Bi-tagged特征的性能最优;(2)Bi-tagged特征不仅能够提取情感丰富的信息,而且可以提取否定信息;(3)与常用的unigram、bigram特征以及unigram和bigram的组合特征在该文数据集上的分类效果相比,该文所提取的Bi-tagged与unigram的组合特征分类效果更佳,比该文的Baseline的分类准确率提高了4.225%。该研究成果不但可以进一步提高维吾尔文文本情感分类效率,也可为哈萨克语、柯尔克孜语等亲属语言的情感分类提供借鉴。
  • 基于包含度和频繁模式的文本特征选择方法 下载:38 浏览:355
  • 池云仙1,2 赵书良2 李仁杰1 《中文研究》 2018年2期
  • 摘要:
    大数据时代,文本数据量的爆炸式增长使得特征选择成为文本挖掘领域最关键的任务之一。文档中的词语和模式规模庞杂,故需保证所挖掘特征的质量充满挑战。"基于模式"特征选择方法具有传统"基于词语"方法所没有的优越特性,可以进行有效地信息去噪,提升文本挖掘性能。该文提出基于包含度和频繁模式的文本特征选择方法:首先,定义基于包含度的相似性度量原理;然后,提出基于包含度的冗余文本频繁模式过滤方法。基于包含度度量文本频繁模式间相似性,以此去除子模式及相似度较高的交叉模式。再通过冗余模式去噪,提升文本频繁模式挖掘性能;提出基于关联度的文本特征选择方法。以经过过滤处理后的非冗余文本频繁模式为基础,进行文本特征选择,并利用词语与文档的关联度进行词语类别划分及权重分配。使所选特征与文档关联度更加清晰,分类效果更好。通过在数据集Reuters-21578上的实验得知,基于包含度和频繁模式的文本特征选择算法性能,优于当前普遍应用的传统文本特征选择方法和新的特征选择及特征抽取方法。
加入编委加入审稿人
中文研究  期刊指标
出版年份 2018-2025
发文量 689
访问量 130587
下载量 39862
总被引次数 406
影响因子 1.192
为你推荐