当代中文学刊
当代中文学刊
《当代中文学刊》系开放获取期刊,本刊是研究中国文学和文化的学术刊物,侧重于近代以来的文学和文化研究,鼓励中文学科内部各专业的贯通,倡导中文学科与其它人文社会科学的交融,以弘扬人文精神、提倡学术创新、促进学术繁荣为宗旨。本刊集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论该领域内不同方向问题与成果交流的学术平台。

ISSN: 3008-0282

《当代中文学刊》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。

  • 子字粒度切分在蒙汉神经机器翻译中的应用 下载:25 浏览:384
  • 任众 侯宏旭 吉亚图 武子玉 白天罡 雷颖 《当代中文学刊》 2019年2期
  • 摘要:
    在蒙汉神经机器翻译任务中,由于语料稀少使得数据稀疏问题严重,极大影响了模型的翻译效果。该文对子字粒度切分技术在蒙汉神经机器翻译模型中的应用进行了研究。通过BPE算法将切分粒度控制在字符和词之间的子字粒度大小,将低频词切分成相对高频的子字片段,来缓解数据稀疏问题,从而在有限的数据和硬件资源条件下,更高效地提升模型的鲁棒性。实验表明,在两种网络模型中使用子字粒度切分技术,BLEU值分别提升了4.81和2.96,且随着语料的扩大,训练周期缩短效果也更加显著,说明子字粒度切分技术有助于提高蒙汉神经机器翻译效果。
  • 融合反问特征的卷积神经网络的中文反问句识别 下载:23 浏览:368
  • 文治1 李旸1 王素格1,2 廖健1 陈鑫1 《当代中文学刊》 2019年2期
  • 摘要:
    反问是一种带有强烈情感色彩的表达方式,对其进行自动识别将提升隐式情感分析的整体效率。针对汉语反问句识别问题,该文分析了反问句的句式特点,将反问句的句式结构融入到卷积神级网络的构建中,提出一种融合句式结构的卷积神经网络的反问句识别方法。首先利用置信度大于70%的反问句的特征词、序列模式,对大规模未被标注的微博语料进行初步筛选,获取大量伪反问句。然后通过多个卷积核分别对句子的词向量和反问句的特征进行抽取,获取句子语义特征和反问词特征,将两者共同作用生成句子的表示。最后利用softmax分类器实现句子的分类。实验结果表明,利用该方法对微博中反问句的识别准确率、召回率和F1值分别达到了89.5%、84.2%和86.7%。
  • 基于可靠词汇语义约束的词语向量表达修正研究 全文替换 下载:43 浏览:456
  • 梁泳诗 黄沛杰 黄培松 杜泽峰 《当代中文学刊》 2019年2期
  • 摘要:
    词语向量表达(word vector representation)是众多自然语言处理(natural language processing,NLP)下游应用的基础。已有研究采用各种词汇分类体系提供的词汇语义约束,对海量语料训练得到的词向量进行修正,改善了词向量的语义表达能力。然而,人工编制或者半自动构建的词汇分类体系普遍存在语义约束可靠性不稳定的问题。该文基于词汇分类体系与词向量之间、以及异构词汇分类体系之间的交互确认,研究适用于词语向量表达修正的可靠词汇语义约束提炼方法。具体上,对于词汇分类体系提供的同义词语类,基于词语向量计算和评估类内词语的可靠性。在其基础上,通过剔除不可靠语义约束机制避免词语类划分潜在不够准确的词语的错误修正;通过不同词汇分类体系的交互确认恢复了部分误剔除的语义约束;并通过核心词约束传递机制避免原始词向量不够可靠的词语在词向量修正中的不良影响。该文采用NLPCC-ICCPOL 2016词语相似度测评比赛中的PKU 500数据集进行测评。在该数据集上,将该文提出的方法提炼的可靠词汇语义约束应用到两个轻量级后修正的研究进展方法,修正后的词向量都获得更好的词语相似度计算性能,取得了0.649 7的Spearman等级相关系数,比NLPCC-ICCPOL 2016词语相似度测评比赛第一名的方法的结果提高25.4%。
  • 基于篇章修辞结构的自动文摘连贯性研究 下载:39 浏览:379
  • 刘凯 王红玲 《当代中文学刊》 2019年2期
  • 摘要:
    尽管抽取式自动文摘方法是目前自动文摘领域的主流方法,并且取得了长足的进步,但抽取式自动文摘形成的摘要由于缺乏句子之间的合理指代或篇章结构,使得文摘缺乏连贯性而影响可读性。为提高自动摘要的可读性,该文尝试将篇章修辞结构信息应用于中文自动文摘。首先,基于汉语篇章修辞结构抽取摘要,然后使用基于LSTM的方法对文本连贯性进行建模,并使用该模型对文摘的连贯性做出评价。实验结果表明:在摘要抽取方面,基于篇章修辞结构的自动文摘相比于传统的抽取方法具有更好的ROUGE评价值;在使用基于LSTM连贯性模型评价摘要连贯性方面,篇章结构信息在自动抽取文摘时可以很好地提炼出文章的主旨,同时使摘要具有更好的结果。
  • 融合卷积神经网络与层次化注意力网络的中文文本情感倾向性分析 下载:43 浏览:265
  • 程艳 叶子铭 王明文 张强 张光河 《当代中文学刊》 2019年1期
  • 摘要:
    文本情感倾向性分析是自然语言处理研究领域的一个基础问题。基于深度学习的模型是处理此问题的常用模型。而当前的多数深度学习模型在中文文本情感倾向性分析方面的应用存在两个问题:一是未能充分考虑到文本的层次化结构对情感倾向性判定的重要作用,二是传统的分词技术在处理文本时会产生歧义。该文针对这些问题基于卷积神经网络与层次化注意力网络的优点提出了一种深度学习模型C-HAN(Convolutional Neural Network-based and Hierarchical Attention Network-based Chinese Sentiment Classification Model),先用并行化卷积层学习词向量间的联系与组合形式,再将其结果输入到基本单元为双向循环神经网络的层次化注意力网络中判定情感倾向。实验表明:模型在中文评论数据集上倾向性分类准确率达到92.34%,和现有多个情感分析模型相比有所提升;此外,对于中文文本,选择使用字级别词向量作为原始特征会优于词级别词向量作为原始特征。
  • 基于注意力机制的上下文相关的问答配对方法 下载:24 浏览:390
  • 王路 张璐 李寿山 周国栋 《当代中文学刊》 2019年1期
  • 摘要:
    目前,关于问答的大部分研究都是面向正式文本的问答对。然而,与以往研究不同的是,该文关注于社会媒体上存在的非正式文本问答对。非正式文本会存在问题文本里包含多个问题以及回答文本里包含多个回答的情况。针对该情况,我们提出了一个新的任务:问答配对,即对问题文本的每个问题,从答案文本中找到和该问题相关的句子。首先,我们从产品问答网站上收集了大规模非正式文本问答对,并在此基础上创建了一个产品问答配对语料库。其次,为了解决非正式文本中存在的噪声问题,提出了一种基于注意力机制的上下文相关的问答配对方法。实验结果表明,该文提出的方法能有效地提升非正式文本的问答配对的性能。
  • 融合深度匹配特征的答案选择模型 下载:42 浏览:464
  • 冯文政 唐杰 《当代中文学刊》 2019年1期
  • 摘要:
    答案选择是自动问答系统中的关键任务之一,其主要目的是根据问题与候选答案的相似性对候选答案进行排序,并选择出相关性较高的答案返回给用户。可将其看作成一个文本对的匹配问题。该文利用词向量、双向LSTM、2D神经网络等深度学习模型对问题—答案对的语义匹配特征进行了提取,并将其与传统NLP特征相结合,提出一种融合深度匹配特征的答案选择模型。在Qatar Living社区问答数据集上的实验显示,融合深度匹配特征的答案选择模型比基于传统特征的模型MAP值高5%左右。
  • 藏文音节拼写检查的CNN模型 下载:24 浏览:274
  • 色差甲1,2 贡保才让1,2 才让加1,2 《当代中文学刊》 2019年1期
  • 摘要:
    藏文音节拼写检查是藏语自然语言处理的基本任务,在藏文文字处理、文字识别、文本生成等领域具有广泛的应用。该文首先针对藏文音节的结构提出了音节向量化的方法,即音节矩阵。然后构建了适合于藏文音节拼写检查的CNN模型,使用1 364 880个藏文音节进行训练。最后对68 244个藏文音节进行测试。实验结果显示,藏文音节拼写检查CNN模型的结果优于规则、RNN和LSTM等模型,不仅对符合藏文文法的音节能正确识别外,而且对梵音藏文音节也能有效识别,正确率、召回率以及F值分别为99.52%、99.30%和99.41%。
  • 基于小波分析的特征提取文本分类方法研究 下载:43 浏览:267
  • 朱晋1 怀丽波1 崔荣一1 尹慧2 《当代中文学刊》 2018年12期
  • 摘要:
    该文提出了基于小波分析的文本特征提取方法,对传统TF-IDF向量空间模型下的特征向量进行了该文的小波变换、逆小波变换。使用KNN分类方法检验这两空间下的文本分类准确率。实验结果表明,该文的小波变换方法在减少了TF-IDF向量空间模型近一半的维度下在各种实验条件中都能和向量空间模型保持一致的分类准确率;该文的逆小波变换方法在大幅度降低TF-IDF向量空间模型维度的基础上,同实验中其他特征提取方法相比,在特定条件下有着卓越的特定文本类别分类优势,这也在一定程度上检验了压缩感知理论的正确合理性。
  • 基于细粒度词表示的命名实体识别研究 下载:43 浏览:252
  • 林广和1 张绍武1,2 林鸿飞1 《当代中文学刊》 2018年12期
  • 摘要:
    命名实体识别(NER)是自然语言处理中的一项基础任务,其性能的优劣极大地影响着关系抽取、语义角色标注等后续任务。传统的统计模型特征设计难度大、领域适应性差,一些神经网络模型则忽略了词本身所具有的形态学信息。针对上述问题,该文构建了一种基于细粒度词表示的端到端模型(Finger-BiLSTM-CRF)来进行命名实体识别任务。该文首先提出一种基于注意力机制的字符级词表示模型Finger来融合形态学信息和单词的字符信息,然后将Finger与BiLSTM-CRF模型联合进行实体识别,最终该方法以端到端、无任何特征工程的方式在CoNLL 2003数据集上取得了F1为91.09%的结果。实验表明,该文设计的Finger模型显著提升NER系统的召回率,从而使得模型的识别能力显著提升。
  • 基于BiLSTM-CRF模型的汉语否定信息识别 下载:36 浏览:290
  • 陈世梅1 伍星1 唐凡2 《当代中文学刊》 2018年12期
  • 摘要:
    否定信息识别是将自然语言中的肯定信息与否定信息分离,它对信息检索、文本挖掘、情感分析等都有重要作用。该文主要对汉语否定信息中的触发词识别和覆盖域识别进行研究,采用双向长短期记忆网络结合条件随机场(BiLSTM-CRF)为模型,预训练的词向量为输入特征对触发词进行识别,在此基础上添加已知触发词特征对覆盖域进行识别。中文否定与不确定信息语料上,触发词识别取得F1值为91.03%,覆盖域识别在该语料的子语料财经新闻上取得F1值最高为73.91%。实验结果表明,这一模型在汉语否定触发词识别和覆盖域识别上取得的效果优于CRF模型和BiLSTM模型。
  • 基于BiLSTM-CRF模型的汉语否定信息识别 下载:21 浏览:458
  • 朱晋1 怀丽波1 崔荣一1 尹慧2 《当代中文学刊》 2018年12期
  • 摘要:
    该文提出了基于小波分析的文本特征提取方法,对传统TF-IDF向量空间模型下的特征向量进行了该文的小波变换、逆小波变换。使用KNN分类方法检验这两空间下的文本分类准确率。实验结果表明,该文的小波变换方法在减少了TF-IDF向量空间模型近一半的维度下在各种实验条件中都能和向量空间模型保持一致的分类准确率;该文的逆小波变换方法在大幅度降低TF-IDF向量空间模型维度的基础上,同实验中其他特征提取方法相比,在特定条件下有着卓越的特定文本类别分类优势,这也在一定程度上检验了压缩感知理论的正确合理性。
  • 基于条件随机场的方志古籍别名自动抽取模型构建 下载:40 浏览:272
  • 李娜 《当代中文学刊》 2018年12期
  • 摘要:
    近年来,我国数字图书馆发展迅速,为馆藏资源的深度挖掘和利用提供了基础。该文以数字化的方志古籍为研究语料,在全文人工标注的基础上,通过分析物产别名的内外部特征,构建基于条件随机场的别名自动抽取模型,精确率达到了93.52%。实验结果表明,条件随机场模型能够较好的应用于方志类古籍内容挖掘,为数字图书馆资源利用提供借鉴。
  • 怎样利用语言知识资源进行语义理解和常识推理 下载:72 浏览:287
  • 袁毓林1 卢达威2 《当代中文学刊》 2018年11期
  • 摘要:
    该文讨论怎样利用语言知识资源来帮助机器进行语义理解和常识推理。首先,指出人类生活在常识和意义世界中,人工智能机器人必须理解自然语言的意义,能够在此基础上进行常识推理。接着,简单梳理了基于知识和基于统计两种自然语言处理路线各自的优长和短缺。然后,说明完全绕开知识的统计方法和深度学习,都不能真正理解概念和语言。该文通过具体案例说明,《实词信息词典》已经配备了有关词项的语义角色关系及其句法配置信息;把这种语言知识加入知识图谱和内容计算中,可以为人工智能提供理解和解释从而造就一种可解释的人工智能。由于"物性角色"描述了名词所指事物的百科知识,可用以回答相关事物是什么(形式角色)、有哪些部件(构成角色)、用什么做的(材料)、怎么形成的(施成)、有什么用途(功用)等常识性问题。
  • 文本可读性的自动分析研究综述 下载:51 浏览:290
  • 吴思远1,2 蔡建永2,3 于东1 江新2 《当代中文学刊》 2018年11期
  • 摘要:
    文本可读性问题最初由教育学家提出,初衷是辅助教师为语言学习者推荐适合其阅读水平的文本。随着计算机技术的发展及网页文本的涌现,对文本进行可读性分析有了更加丰富的技术手段和应用场景。该文对可读性自动分析的相关研究进行了梳理,将可读性自动分析的方法总结为公式法、分类法和排序法三类;然后进一步介绍了可读性自动分析中的两项重要内容:文本特征的选择和数据集的使用;最后对可读性研究的发展方向进行展望。
  • ACMF:基于卷积注意力模型的评分预测研究 下载:66 浏览:295
  • 商齐1 曾碧卿1,2 王盛玉1 周才东1 曾锋1 《当代中文学刊》 2018年11期
  • 摘要:
    评分数据稀疏是影响评分预测的主要因素之一。为了解决数据稀疏问题,一些推荐模型利用辅助信息改善评分预测的准确率。然而大多数推荐模型缺乏对辅助信息的深入理解,因此还有很大的提升空间。鉴于卷积神经网络在特征提取方面和注意力机制在特征选择方面的突出表现,该文提出一种融合卷积注意力神经网络(Attention Convolutional Neural Network,ACNN)的概率矩阵分解模型:基于卷积注意力的矩阵分解(Attention Convolutional Model based Matrix Factorization,ACMF),该模型首先使用词嵌入将高维、稀疏的词向量压缩成低维、稠密的特征向量;接着,通过局部注意力层和卷积层学习评论文档的特征;然后,利用用户和物品的潜在模型生成评分预测矩阵;最后计算评分矩阵的均方根误差。在ML-100k、ML-1m、ML-10m、Amazon数据集上的实验结果表明,与当前取得最好预测准确率的PHD模型相比,ACMF模型在预测准确率上分别提高了3.57%、1.25%、0.37%和0.16%。
  • 基于相似消息的流行度预测方法 下载:52 浏览:461
  • 高金华1,2 沈华伟1,2 程学旗1,2 刘悦1 《当代中文学刊》 2018年11期
  • 摘要:
    社交网络中消息的流行度预测问题在很多应用领域都有着重要意义。传统的流行度预测方法包括基于特征的方法和基于点过程的方法。基于点过程的方法无法利用历史消息的信息,而基于特征的方法则使用一个统一的模型来对所有的消息进行预测,没有考虑消息的特异性。因此,该文提出了一种基于相似消息的流行度预测方法。对于待预测微博,我们从历史消息选取出与之最相似的前K条消息来进行预测。在计算消息相似度时,我们借助了文档建模领域的LDA模型来学习消息的表示。在数据集上的实验结果表明,该方法可以有效发现在传播模式上与待预测消息相似的历史消息,并在流行度预测任务上取得了比对比模型更好的预测效果。
  • 航空术语语义知识库辅助构建方法 下载:46 浏览:269
  • 王思博 王裴岩 张桂平 《当代中文学刊》 2018年10期
  • 摘要:
    语义知识库是自然语言处理任务的基础性资源,广泛应用于语义计算和语义推理等任务。现有的大规模语义知识库基本都是通用型知识库,缺乏特定领域的语义知识。为了弥补这种不足,该文基于HowNet的语义理论体系,提出了一种辅助构建航空术语语义知识库的方法。该方法根据航空术语的特点将辅助构建分成四个关键过程,构建了2 000条术语概念描述(DEF)。最后通过对人工标注的术语间相似度与根据术语DEF计算的术语间相似度结果的对比,验证了该构建方法的有效性。
加入编委加入审稿人
当代中文学刊  期刊指标
出版年份 2018-2025
发文量 673
访问量 116872
下载量 36587
总被引次数 342
影响因子 0.882
为你推荐