请选择 目标期刊

基于改进TextRank的藏文抽取式摘要生成 下载:61 浏览:473

李维1,2 闫晓东1,2 解晓庆1,2 《中文研究》 2020年1期

摘要:
目前,藏文抽取式文本摘要方法主要是提取文本自身的特征,对句子进行打分,不能挖掘句子中深层的语义信息。该文提出了一种改进的藏文抽取式摘要生成方法。该方法将外部语料库的信息以词向量的形式融入到TextRank算法,通过TextRank与词向量的结合,把句子中每个词语映射到高维词库形成句向量,进行迭代为句子打分,并选取分值最高的句子重新排序作为文本的摘要。实验结果表明,该方法能有效提升摘要质量。该文还在传统ROUGE评测方法的基础上,提出了一种采用句子语义相似度计算的方式进行摘要评测的方法。

基于粗糙数据推理的TextRank关键词提取算法 下载:54 浏览:417

周宁 石雯茜 朱昭昭 《中文研究》 2020年1期

摘要:
基于图模型的TextRank算法是一种有效的关键词提取算法,在提取关键词时可取得较高准确度。但该算法在构造图的关联边时,所采用的共现窗口规则仅考虑了局部词汇间的关联,并具有较大随意性与不确定性。针对这一问题,该文提出了一种基于粗糙数据推理理论的改进TextRank关键词提取算法,粗糙数据推理可扩大关联范围,增加关联数据,得到的结果更加全面。结合粗糙数据推理理论中的关联规则,该文提出的算法做了以下改进:依据词义对候选关键词进行划分;再通过粗糙数据推理对不同分类中候选词间的关联关系进行推理。实验结果表明,与传统的TextRank算法相比,改进后算法的提取精度有了明显的提高,证明了利用粗糙数据推理的思想能有效地改善算法提取关键词的性能。

EDA技术课程实验教学改革探索 下载:65 浏览:379

王超 《国际科技论坛》 2018年11期

摘要:
EDA技术课程实验教学往往是以验证性实验为主,这样很难使学生产生浓厚的学习兴趣,也不利于提高学生分析问题和解决问题的能力。为此在实验内容的安排上,采用了渐进式的方式,把实验项目由简到难分为基础性、提高性、课程设计和毕业设计四个阶段,以及针对不同阶段采用了不同的评定标准。实践教学证明:这些实验项目的设置有助于启发学生的创造性思维,也极大地提高了学生的工程实践能力。

中文字粒度切分在蒙汉机器翻译的应用 下载:27 浏览:339

苏依拉 高芬仁 庆道尔吉 《中文研究》 2019年11期

摘要:
在机器翻译任务中,主流的深度学习算法大多使用词或子词作为基础的语义单元,在词或子词层面学习嵌入表征。然而,词粒度层面存在一系列缺点。该文基于LSTM和Transformer蒙汉翻译模型,对蒙文进行子词粒度切分,对中文分别进行子词和字粒度切分对比实验。实验结果显示,相比于子词粒度切分,基于Transformer的蒙汉翻译模型和基于LSTM的蒙汉翻译模型的字粒度切分有极大的BLEU值提升,字级别的蒙汉翻译模型在验证集和测试集上都显著优于混合字和词的子词级别的蒙汉翻译模型。其表明,字级别的蒙汉翻译模型更能捕捉单元之间的语义联系,提高蒙汉翻译性能。

融入分类词典的汉越混合网络神经机器翻译集外词处理方法 下载:63 浏览:445

车万金1,2 余正涛1,2 郭军军1,2 文永华1,2 于志强1,2 《中文研究》 2019年11期

摘要:
在神经机器翻译中,因词表受限导致的集外词问题很大程度上影响了翻译系统的准确性。对于训练语料较少的资源稀缺型语言的神经机器翻译,这种问题表现得更为严重。近几年,受到外部知识融入的启发,该文在RNNSearch模型基础上,提出了一种融入分类词典的汉越混合网络神经机器翻译集外词处理方法。对于给定的源语言句子,扫描分类词典以确定候选短语句对并标签标记,解码端利用词级组件和短语组件的混合解码网络,很好地生成单词集外词和短语集外词的翻译,从而改善汉越神经机器翻译的性能。在汉越、英越和蒙汉翻译实验上表明,该方法显著提高了准确率,对于资源稀缺型语言的神经机器翻译性能有一定的提升。

基于数据增强的藏文改写检测研究 下载:34 浏览:486

赵小兵1 鲍薇2 董建2 包乌格德勒3 《中文研究》 2019年10期

摘要:
该文针对藏文语料稀缺的问题,在藏汉双语、藏文单语文本改写检测任务中使用数据增强的方法,在一定程度上解决了低资源语言训练语料规模小的问题。在藏汉跨语言文本改写检测任务中,该文使用数据增强方法,有效利用目前公开的藏汉平行语料,扩充藏汉跨语言文本改写检测训练语料,当扩充至20万句对时,藏汉改写检测模型的皮尔森系数(pearson correlation)达到0.547 6,比基线系统的皮尔森系数提升了0.397 1,表明藏汉改写检测模型检测出的句对相似度值与人工标注的相似度值已达到中等程度相关。在藏文单语言任务中,该文采用训练藏文音节向量的方法,以缓解语料稀缺带来的词向量稀疏问题。实验结果表明,基于藏文音节向量的藏文改写检测模型的皮尔森系数可达到0.678 0,比相应的基于藏文词向量实验的结果提升了0.1,使得藏文单语言文本改写检测模型的检测结果与人工标注的结果达到了强相关程度。

融入注意力机制的越南语组块识别方法 下载:70 浏览:320

王闻慧1 毕玉德2 雷树杰1 《中文研究》 2019年10期

摘要:
对于越南语组块识别任务,在前期对越南语组块内部词性构成模式进行统计调查的基础上,该文针对Bi-LSTM+CRF模型提出了两种融入注意力机制的方法:一是在输入层融入注意力机制,从而使得模型能够灵活调整输入的词向量与词性特征向量各自的权重;二是在Bi-LSTM之上加入了多头注意力机制,从而使模型能够学习到Bi-LSTM输出值的权重矩阵,进而有选择地聚焦于重要信息。实验结果表明,在输入层融入注意力机制后,模型对组块识别的F值提升了3.08%,在Bi-LSTM之上加入了多头注意力机制之后,模型对组块识别的F值提升了4.56%,证明了这两种方法的有效性。

基于多通道双向长短期记忆网络的情感分析 下载:16 浏览:320

李卫疆 漆芳 《中文研究》 2019年10期

摘要:
当前存在着大量的语言知识和情感资源,但在基于深度学习的情感分析研究中,这些特有的情感信息,没有在情感分析任务中得到充分利用。针对以上问题,该文提出了一种基于多通道双向长短期记忆网络的情感分析模型(multi-channels bidirectional long short term memory network,Multi-Bi-LSTM),该模型对情感分析任务中现有的语言知识和情感资源进行建模,生成不同的特征通道,让模型充分学习句子中的情感信息。与CNN相比,该模型使用的Bi-LSTM考虑了词序列之间依赖关系,能够捕捉句子的上下文语义信息,使模型获得更多的情感信息。最后在中文COAE2014数据集、英文MR数据集和SST数据集进行实验,取得了比普通Bi-LSTM、结合情感序列特征的卷积神经网络以及传统分类器更好的性能。

融合词结构特征的多任务老挝语词性标注方法 下载:43 浏览:68

王兴金 周兰江 张建安 周枫 《中文研究》 2019年9期

摘要:
目前,老挝语词性标注研究处于初期,可用标注语料有限,且老挝语吸收了多种外来词,导致标注语料库存在大量稀疏词。多任务学习是有效识别稀疏词的一种方法,该文研究了老挝词的结构特征,并构建了结合词性标注损失和主辅音辅助损失的多任务老挝语词性标注模型。老挝词有很多词缀可以表达词性信息,因此模型还采用了字符级别的词向量来获取这些词缀信息。特别地,老挝语的句式较长,模型用注意力机制防止长远上下文特征丢失。实验结果表明:相比其他研究方法,该模型的词性标注准确率在有限标注语料下取得更好的表现(93.24%)。

汉藏双语旅游领域知识图谱系统构建 下载:65 浏览:316

冯小兰 赵小兵 《中文研究》 2019年8期

摘要:
旅游业是藏族地区主要的经济来源之一。然而,目前互联网上缺乏藏文旅游信息智能化服务系统,且藏文景点介绍文本也十分匮乏;相反,汉文旅游网站信息量大,但各旅游网站包含的景点不尽相同,景点介绍文本篇幅较长,且各旅游网站对同一个景点描述侧重点不同。为便于不同语言使用者能快速准确地了解景点相关的知识,该文首先在汉文旅游领域分别采用基于BLSTM神经网络模型、基于维基百科以及基于网络爬虫等形式获取与景点相关的共8种属性知识;并通过采用基于维基百科等方法构建的旅游领域汉藏词典,将获取的汉文知识迁移到藏文,其翻译覆盖率平均值达70.44%。最终,构建汉藏双语旅游领域知识图谱。

TransRD:一种不对等特征的知识图谱嵌入表示模型 下载:59 浏览:458

朱艳丽1,2 杨小平1 王良1 张志宇1 《中文研究》 2019年8期

摘要:
知识图谱嵌入是一种将实体和关系映射到低维向量空间的技术。目前已有的嵌入表示方法在对具有不对等特征的知识图谱中的实体和关系建模时存在两大缺陷:一是假定头尾实体来自同一语义空间,忽略二者在链接结构和数量上的不对等;二是每个关系单独配置一个投影矩阵,忽略关系之间的内在联系,导致知识共享困难,泛化能力差。该文提出一种新的嵌入表示方法TransRD,首先对头尾实体采用不对等转换矩阵进行投影,并用ADADELTA算法自适应调整学习率;其次对关系按相关性分组,每组关系使用同一对投影矩阵的方式来共享公共信息,解决泛化能力差的问题。在公开的数据集WN18和FB15K以及MPBC20(乳腺癌知识图谱的子集)上进行实验和结果分析并与现有的模型进行对比,结果表明TransRD在各项指标上均取得大幅提升。

融入多特征的汉越新闻观点句抽取方法 下载:40 浏览:416

林思琦 余正涛 郭军军 高盛祥 《中文研究》 2019年7期

摘要:
该文提出一种融入多特征的汉越双语新闻观点句抽取方法。首先针对汉语和越南语标记资源不平衡的问题,构建了汉越双语词嵌入模型,用丰富的中文标记资源来弥补越南语标记资源的缺失。并且该文认为句子的主题特征、位置特征和情感特征对观点句分类具有重要作用,因此将这些特征分别融入词向量和注意力机制中,实现句子语义信息和情感、主题、位置特征的结合。实验表明,该方法可有效提升越南语新闻观点句抽取的准确率。

Transformer-CRF词切分方法在蒙汉机器翻译中的应用 下载:18 浏览:176

苏依拉 张振仁 庆道尔吉 牛向华 高芬 赵亚平 《中文研究》 2019年6期

摘要:
基于编码—解码(端到端)结构的机器翻译逐渐成为自然语言处理之机器翻译的主流方法,其翻译质量较高且流畅度较好,但依然存在词汇受限、上下文语义信息丢失严重等问题。该文首先进行语料预处理,给出一种Transformer-CRF算法来进行蒙古语词素和汉语分词的预处理方法。然后构建了基于Tensor2Tensor的编码—解码模型,为了从蒙古语语料中学习更多的语法和语义知识,该文给出了一种基于词素四元组编码的词向量作为编码器输入,解码阶段。为了进一步缓解神经网络训练时出现的词汇受限问题,该文将专有名词词典引入翻译模型来进一步提高翻译质量和译文忠实度。根据构建模型对不同长度句子进行实验对比,表明模型在处理长时依赖问题上翻译性能得到提高。

基于多特征自注意力BLSTM的中文实体关系抽取 下载:33 浏览:347

李卫疆 李涛 漆芳 《中文研究》 2019年6期

摘要:
实体关系抽取解决了原始文本中目标实体之间的关系分类问题,同时也被广泛应用于文本摘要、自动问答系统、知识图谱、搜索引擎和机器翻译中。由于中文句式和语法结构复杂,并且汉语有更多歧义,会影响中文实体关系分类的效果。该文提出了基于多特征自注意力的实体关系抽取方法,充分考虑词汇、句法、语义和位置特征,使用基于自注意力的双向长短期记忆网络来进行关系预测。在中文COAE 2016Task 3和英文SemEval 2010Task 8数据集上的实验表明该方法表现出了较好的性能。

短语音及易混淆语种识别改进系统 下载:52 浏览:426

李卓茜1 高镇1 王化2 刘俊南2 朱光旭2 《中文研究》 2019年4期

摘要:
该文针对短语音(语段时长小于等于1s)和易混淆语音的语种识别进行研究。选取东方多语种识别竞赛数据集为实验数据集,对比了音素对数似然比特征、梅尔频率倒谱系数特征、深度瓶颈层特征(DBF)在短语音及易混淆语种识别中的性能,证明DBF在两种识别任务中均具有较好的性能。为提升识别准确率提出DBF-I-VECTOR语种识别改进系统,该系统分别将基线DBF-I-VECTOR系统的短语音识别等错误率最优结果从12.26%降低为10.55%,易混淆语音识别等错误率(EER)最优结果从5.53%降低为2.86%。在对比改进系统后端的余弦距离(CDS)、概率线性判别分析(PLDA)、支持向量机(SVM)、极端梯度提升(XGBoost)、随机森林(RF)分类性能时发现RF在短语音任务中分类效果最好,SVM在易混淆任务中分类效果最好。

基于膨胀卷积神经网络模型的中文分词方法 下载:26 浏览:253

王星 李超 陈吉 《中文研究》 2019年3期

摘要:
目前,许多深度神经网络模型以双向长短时记忆网络结构处理中文分词任务,存在输入特征不够丰富、语义理解不全、计算速度慢的问题。针对以上问题,该文提出一种基于膨胀卷积神经网络模型的中文分词方法。通过加入汉字字根信息并用卷积神经网络提取特征来丰富输入特征;使用膨胀卷积神经网络模型并加入残差结构进行训练,能够更好理解语义信息并提高计算速度。基于Bakeoff 2005语料库的4个数据集设计实验,与双向长短时记忆网络模型的中文分词方法做对比,实验表明该文提出的模型取得了更好的分词效果,并具有更快的计算速度。

融合图结构与节点关联的关键词提取方法 下载:20 浏览:203

马慧芳1,2 王双1 李苗1 李宁3 《中文研究》 2019年2期

摘要:
单篇文本的关键词提取可应用于网页检索、知识理解与文本分类等众多领域。该文提出一种融合图结构与节点关联的关键词提取方法,能够在脱离外部语料库的情况下发现单篇文本的关键词。首先,挖掘文本的频繁封闭项集并生成强关联规则集合;其次,取出强关联规则集合中的规则头与规则体作为节点,节点之间有边当且仅当彼此之间存在强关联规则时,边权重定义为关联规则的关联度,将强关联规则集合建模成关联图;再次,综合考虑节点的图结构属性、语义信息和彼此的关联性,设计一种新的随机游走算法计算节点的重要性分数;最后,为了避免抽取的词项之间有语义包含关系,对节点进行语义聚类并选取每个类的类中心作为关键词提取结果。通过设计关联图模型参数的选取、关键词的提取规模、不同算法对比3个实验,在具有代表性的中英文数据上证明了该方法能够有效提升关键词提取的效果。

基于循环实体网络的细粒度情感分析 下载:55 浏览:457

贾川 方睿浦东 康刚 《中文研究》 2019年1期

摘要:
目前,深度神经网络模型已经在文本情感分析领域取得了较好的效果,但是对于属性相关的细粒度的情感分析任务,现有研究方法的效果仍有待改进。该文提出了一种基于循环实体网络来进行细粒度情感分析的方法,在网络中嵌入预定义的评价属性类别信息,利用扩大的内部记忆链来抽取与每个属性类别相关的情感特征,并通过动态记忆单元控制与属性相关情感信息的远距离依赖,然后,对于给定的单个属性类别,利用注意力机制从内部记忆链中抽取该属性类别的情感特征进行分类。该文提出的方法在Sentihood数据上与目前精度最高的方法相比,取得了近1个百分点的提升,而且模型的收敛速度更快。

民事诉讼智能化与信息化的反思 下载:70 浏览:379

王亚明1,2 《争议解决研究》 2020年3期

摘要:
人工智能的发展已经成为当下热点,而人工智能介入民事司法领域则是对旧有的司法体制的冲击和改革,在这日益高涨的司法智能化的过程中,我们应秉持中立原则,审慎对待,在肯定人工智能便捷价值的同时,也不能忽视人工智能对民事司法裁判体系造成的冲击及其带来的司法伦理困境,需要明确法官在智能化司法中的主体地位,廓清人工职能及信息技术的工具地位。

局部几何保持的Laplacian代价敏感支持向量机 下载:34 浏览:384

周国华1,2 宋洁1 殷新春2 《中文研究》 2018年8期

摘要:
不平衡数据广泛存在于现实生活中,代价敏感学习能有效解决这一问题。然而,当数据的标记信息有限或不足时,代价敏感学习分类器的分类精度大大下降,分类性能得不到保证。针对这一情况,该文提出了一种局部几何保持的Laplacian代价敏感支持向量机(LPCS-LapSVM),该模型基于半监督学习框架,将代价敏感学习和类内局部保持散度的思想引入其中,从考虑内在可分辨信息和样本的局部几何分布两方面来提高代价敏感支持向量机在标记信息有限的场景中的分类性能。UCI数据集上的实验结果表明了该算法的有效性。
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享