请选择 目标期刊

基于GMM的文本规则挖掘的粗糙集方法研究 下载:39 浏览:341

洪壮壮 黄兆华 万仲保 张薇 高梦茜 《当代中文学刊》 2020年4期

摘要:
领域文本具有结构复杂、相似性高以及动态变化等特点,且存在着连续型与离散型并存的混合数据,这在一定程度上限制了知识发现方法对文本规则的挖掘效率。针对这一问题,该文提出了基于GMM与粗糙集的文本规则挖掘方法。该方法首先根据目标数据的属性类型构造信息表;然后利用高斯混合模型(GMM,Gaussian Mixture Model)聚类算法对连续数据进行聚类划分,依此对数据进行离散化及状态约简,并生成决策表;最后利用粗糙集理论对决策表进行属性约简,通过约简表对决策规则进行提取。实验结果表明:相比于传统的方法,该文方法拥有更高的抽取精度以及较强的属性约简能力,其信息抽取的平均准确率与F1值能够达到95.0%和95.7%。

多精英采样与个体差分学习的分布估计算法 下载:68 浏览:482

喻飞1 吴瑞峰2 魏波2 张应龙1 夏学文1 《建模与系统仿真》 2020年7期

摘要:
提出了基于多精英采样和差分搜索的分布估计算法EDA-M/D (Estimation distribution algorithm based on multiple elites sampling and individuals differential search)。EDA-M/D利用多精英个体独立采样生成子代来提升算法全局搜索能力,利用精英群体分布的σ2约束采样半径,实现种群从全局搜索逐步过度到局部搜索。当精英群体停滞时,劣势个体借助精英群体的?和种群历史最优解进行差分搜索,帮助种群跳出局部最优解。通过多精英采样与差分搜索的自适应协同实现种群宏观信息与个体微观信息的有机融合。实验结果表明EDA-M/D在稳定性和搜索能力方面均表现出明显的优势。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享