当代中文学刊
当代中文学刊
《当代中文学刊》系开放获取期刊,本刊是研究中国文学和文化的学术刊物,侧重于近代以来的文学和文化研究,鼓励中文学科内部各专业的贯通,倡导中文学科与其它人文社会科学的交融,以弘扬人文精神、提倡学术创新、促进学术繁荣为宗旨。本刊集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论该领域内不同方向问题与成果交流的学术平台。

ISSN: 3008-0282

《当代中文学刊》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。

  • 一种针对成分树的混合神经网络模型 下载:46 浏览:438
  • 霍欢1,2 薛瑶环1 黄君扬1 金轩城1 邹依婷1 《当代中文学刊》 2019年10期
  • 摘要:
    为了提高自然语言处理的准确度,很多工作将句法成分树与LSTM相结合,提出了各种针对成分树的LSTM模型(文中用C-TreeLSTM统称这类模型)。考虑到C-TreeLSTM模型在计算内部节点隐藏状态的过程中,由于一个重要信息来源(即单词)的缺失导致文本建模的准确度不高,该文提出一种针对成分树的混合神经网络模型,通过在C-TreeLSTM模型的节点编码过程中注入各节点所覆盖的短语语义向量来增强节点对文本语义的记忆,故将此模型命名为SC-TreeLSTM。实验结果表明,该模型在情感分类和机器阅读理解两类任务上表现优异。
  • 基于宏观语义表示的宏观篇章关系识别方法 下载:42 浏览:370
  • 周懿 褚晓敏 朱巧明 蒋峰 李培峰 《当代中文学刊》 2019年10期
  • 摘要:
    宏观篇章分析旨在分析相邻段落或段落群之间的语义联系,是自然语言处理领域其他任务的工作基础。该文研究了宏观篇章分析中的关系识别问题,提出了一个宏观篇章关系识别模型。该模型利用基于词向量的宏观篇章语义表示方法和适用于宏观篇章关系识别的结构特征,从两个层面提高了模型分辨宏观篇章关系的能力。在汉语宏观篇章树库(MCDTB)上的实验表明,该模型在大类分类中F1值达到了68.22%,比基准系统提升了4.17%。
  • 基于声学音素向量和孪生网络的二语者发音偏误确认 下载:63 浏览:377
  • 王振宇 解焱陆 张劲松 《当代中文学刊》 2019年10期
  • 摘要:
    随着自动大规模语音识别的不断发展,以自动语音识别为基础的计算机辅助发音教学也随之进步,作为传统教学方法的补充,它极大地弥补了传统教育资源不足以及传统教育方法无法及时给学习者反馈的缺陷。二语学习者的发音偏误确认和评价在计算机辅助发音训练中是较为重要的研究课题之一。针对二语者发音偏误的确认任务中缺少二语偏误发音标注问题,该文提出了一种基于声学音素向量和孪生网络的方法,将带有配对信息的成对的语音特征作为系统输入,通过神经网络将语音特征映射到高层表示,期望将不同的音素区分开。训练过程引入了孪生网络,依照输出的两个音素向量是否来自于同一类音素来调整和优化输出向量之间的距离,并通过相应的损失函数实现优化过程。结果表明使用基于余弦最大间隔距离损失函数的孪生网络获得了89.93%的准确率,优于实验中其它方法。此方法应用在发音偏误确认任务时,不使用标注的二语发音偏误数据训练的情况下,也获得了89.19%的诊断正确率。
  • 面向问答文本的属性分类方法 下载:56 浏览:354
  • 江明奇 沈忱林 李寿山 《当代中文学刊》 2019年10期
  • 摘要:
    属性分类是属性级情感分析中的一个重要任务。该任务旨在对文本包含的某些具体属性进行自动分类。已有的属性分类方法研究基本都是面向新闻、评论等文本类型。与已有研究不同的是,该文的研究主要面向问答文本的属性分类任务。针对问答文本的属性分类问题,该文提出了一种多维文本表示的方法。首先,该方法进行中文句子切分;其次,使用LSTM模型对每个子问题和答案学习一个隐层表示;再其次,通过融合多个隐层表示,形成多维文本表示;最后,使用卷积层处理多维文本表示,获得最终分类结果。实验结果表明该方法明显优于传统的属性分类方法。
  • 韩国语句子结构相似度计算方法研究 下载:44 浏览:263
  • 毕玉德1,2 姜博文2 《当代中文学刊》 2019年9期
  • 摘要:
    句子相似度计算是信息处理领域一项基础技术,在基于实例的机器翻译中直接影响译文质量。该文以韩国语句子为研究对象,结合韩国语的句子特点提出了一种句子结构相似度的计算方法。该方法通过先提取句子的骨架结构,然后结合韩国语的句法特点制定标记转换规则,最后用转换后的句子结构与实例库中句子匹配得到与之相似的句子,得出两个句子间的结构相似度,并且通过实验验证了该方法的可行性,提高了相似度计算效果。
  • 神经机器翻译中英语单词及其大小写联合预测模型 下载:42 浏览:366
  • 张楠1 李响2,3 靳晓宁1 陈伟4 《当代中文学刊》 2019年9期
  • 摘要:
    英文中单词有大小写之分,如果使用不规范,会降低语句的可读性,甚至造成语义上的根本变化。当前的机器翻译处理流程一般先翻译生成小写的英文译文,再采用独立的大小写恢复工具进行还原,这种方式步骤繁琐且没有考虑上下文信息。另一种方式是抽取包含大小写的词表,但这种方式扩大了词表,增加了模型参数。该文提出了一种在神经机器翻译训练中联合预测英语单词及其大小写属性的方法,在同一个解码器输出层分别预测单词及其大小写属性,预测大小写时充分考虑源端语料和目标端语料上下文信息。该方法不仅减小了词表的大小和模型参数,译文的质量也得到提升。在WMT 2017汉英新闻翻译任务测试集上,相比基线方法,该方法在大小写敏感和大小写不敏感两个评价指标上分别提高0.97BLEU和1.01BLEU,改善了神经机器翻译模型的性能。
  • 面向神经机器翻译的集成学习方法分析 下载:44 浏览:459
  • 李北1 王强1 肖桐1 姜雨帆1 张哲旸1 刘继强1 张俐1 于清2 《当代中文学刊》 2019年9期
  • 摘要:
    集成学习是一种联合多个学习器进行协同决策的机器学习方法,应用在机器翻译任务的推断过程中可以有效整合多个模型预测的概率分布,达到提升翻译系统准确性的目的。虽然该方法的有效性已在机器翻译评测中得到了广泛验证,但关于子模型的选择与融合的策略仍鲜有研究。该文主要针对机器翻译任务中的参数平均与模型融合两种集成学习方法进行大量的实验,分别从模型与数据层面、多样性与模型数量层面对集成学习的策略进行了深入探索。实验结果表明在WMT中英新闻任务上,所提模型相比Transformer单模型有3.19个BLEU值的提升。
  • 基于HowNet的语义表示学习 下载:47 浏览:493
  • 朱靖雯1 杨玉基2 许斌2 李涓子2 《当代中文学刊》 2019年9期
  • 摘要:
    HowNet是一个大规模高质量的跨语言(中英)常识知识库,蕴含着丰富的语义信息。该文利用知识图谱领域的方法将HowNet复杂的结构层层拆解,得到了知识图谱形式的HownetGraph,进而利用网络表示学习以及知识表示学习方法得到了跨语言(中、英)、跨语义单位(字词、义项①、DEFCONCEPT②和义原)的向量表示,在词语相似度(word similarity)和词语类比(word analogy)任务上对中英文数据集进行了实验,实验结果显示该文提出的方法在词语语义相似度的任务上取得了最好效果。
  • 基于门控联合池化自编码器的通用性文本表征 下载:33 浏览:490
  • 张明华1 吴云芳1 李伟康1 张仰森2 《当代中文学刊》 2019年9期
  • 摘要:
    为了学习文本的语义表征,以往的研究者主要依赖于复杂的循环神经网络(recurrent neural networks,RNNs)和监督式学习方法。该文提出了一种门控联合池化自编码器(gated mean-max AAE)用于学习中英文的文本语义表征。该文的自编码器完全通过多头自注意力机制(multi-head self-attention mechanism)来构建编码器和解码器网络。在编码阶段,提出了均值—最大化(mean-max)联合表征策略,即同时运用平均池化(mean pooling)和最大池化(max pooling)操作来捕获输入文本中多样性的语义信息。为促使联合池化表征可以全面地指导重构过程,解码器采用门控操作进行动态关注。通过在大规模中英文未标注语料上训练模型,获得了高质量的句子编码器。在重构文本段落的实验中,该文模型在实验效果和计算效率上均超越了传统的RNNs模型。将公开训练好的文本编码器,使其可以方便地运用于后续的研究。
  • 基于多特征Bi-LSTM-CRF的影评人名识别研究 下载:48 浏览:387
  • 禤镇宇1 蒋盛益1,2 张礼明1 包睿1 《当代中文学刊》 2019年8期
  • 摘要:
    近年来电影行业蓬勃发展,相关的信息抽取和分析技术日益受到行业内的重视,其中对电影主创人物的分析尤为重要。而电影评论作为观影群体的主要反馈信息,具有重要的分析价值。如何从影评中自动抽取主创人名成为重要的基础工作。然而评论中观众对人物的称谓方式多样复杂,而且新电影的影评中往往存在大量人名未登录词,传统方法难以有效识别。针对影评的这些特点,该文提出一种基于多特征Bi-LSTM-CRF的影评人名识别方法。该方法通过利用外部人名语料和未标注影评提取字符级的特征,并采用Bi-LSTM-CRF模型进行人名字符序列标注。实验结果表明,该方法能够有效识别影评中的复杂称谓和人名未登录词,从而有效地抽取影评中的人名实体。
  • 基于注意力机制与文本信息的用户关系抽取 下载:78 浏览:269
  • 赵赟 吴璠 王中卿 李寿山 周国栋 《当代中文学刊》 2019年8期
  • 摘要:
    随着社交媒体的发展,用户之间的关系网络对于社交媒体的分析有很大的帮助。因此,该文主要研究用户好友关系检测。以往的关于用户好友关系抽取的研究主要基于社交媒体上的结构化信息,比如其他好友关系,用户的不同属性等。但是,很多时候用户本身并没有大量的好友信息存在,同时也不一定有很多确定的属性。因此,我们希望基于用户发表的文本信息来对用户关系进行预测。不同于以往的潜在好友推荐算法,该文提出了一种基于注意力机制以及长短时记忆网络(long short-term memory,LSTM)的好友关系预测模型,将好友之间的评论分开处理,通过分析用户之间的评论来判断是否具备一定的好友关系。该模型将好友双方信息拼接后的结果作为输入,并将注意力机制应用于LSTM的输出。实验表明,用户之间的评论对于好友关系预测确实有较大的实际意义,该文提出的模型较之于多个基准系统的效果,取得了明显的提升。在不加入任何其它非文本特征的情况下,实验结果的准确率达到了77%。
  • 基于主题模型的古典乐器诗词文本挖掘 下载:48 浏览:456
  • 申资卓 杨莹 邵艳秋 《当代中文学刊》 2019年8期
  • 摘要:
    古代先贤将乐器按其制作材料分为八类,《周礼·春官·大师》中记载"皆播之以八音:金石土革丝木匏竹。"该文将《全唐诗》、《全宋词》中有关"八音"的诗句、词句作为研究对象,使用基于LDA和NMF的主题挖掘、基于Author-Topic-Model的作者相似度计算等方法。从宏观到微观,从整体诗词到具体诗人/词人,从主题的聚类、动词形容词的抽取到具体诗人词人作品相似度的计算,多维度、多层次、多角度研究了唐诗宋词中的中国古典乐器。
  • 汉语逻辑补足义标注框架研究 下载:53 浏览:436
  • 张坤丽1 韩英杰1 贾玉祥1 穆玲玲1 穗志方2 昝红英1 《当代中文学刊》 2019年7期
  • 摘要:
    逻辑补足义是指附加在以谓词为中心的基本命题成分之上的否定、程度、时体、模态和语气等,具体表现为逻辑语义算子对谓词的语义约束关系,是基本命题成分所表达语义关系的有效补充。在句子中,逻辑补足义所表达的语义是句子深度语义理解的重要层面。该文以深层语义理解为目标,在逻辑补足义已有的研究基础上,建立了否定、程度、时体和语气分类体系,构建了相应的算子词典;制定标注规范,对已经标注了基本命题义语义角色的句子进行各类逻辑补足义的标注;最后,对标注的结果进行统计并对标注过程中出现的问题进行了分析。
  • 基于序列标注的引语识别初探 下载:49 浏览:477
  • 贾泓昊 罗智勇 《当代中文学刊》 2019年7期
  • 摘要:
    句间引用关系自动识别是篇章分析中一项重要内容。句间引用关系影响着对句群篇章的分析,而目前自然语言处理中对引用这一句间关系的研究较少。句间引用关系主要体现在引语中的引用句上。引语由引导句和引用句组成,一般分为直接引语和间接引语,其中间接引语的识别难度最大。引导句和引用句相对位置不定、不同领域语料的引语与非引语比例极不均衡等进一步增加了引语自动识别的难度。该文主要尝试对引用这一句间关系进行初步探索,采用条件随机场(CRF)以及双向长短期记忆网络与条件随机场相结合(BLSTM-CRF)的方法对引语进行自动识别,并引入引导句中管领词特征进行实验对比。实验结果表明,CRF模型和BLSTM-CRF模型对引语的识别精确率分别达到85.49%和80.19%,F值分别达到78.75%和79.60%。
  • 基于情感分析的“真假美猴王”存疑研究 下载:76 浏览:271
  • 张辰麟1 王明文1 谭亦鸣1 陈志明1 左家莉1 罗远胜2 《当代中文学刊》 2019年7期
  • 摘要:
    《西游记》是我国四大名著之一。"真假美猴王"事件作为《西游记》的高潮部分,留下了不少伏笔,也引发了多种解读。该文通过运用情感分析的方法,对"真假美猴王"事件前后孙悟空与其他角色的对话进行分析。通过比较孙悟空在"真假美猴王"事件前后,对其他角色情感值的变化,得到了"孙悟空并没有被如来打死,‘真假美猴王’事件消灭的‘心魔’是孙悟空的反抗精神。事件之后,孙悟空选择屈服于神权"的结论。初步探索了情感分析技术对文学研究的可行性。
  • 基于枢轴语言的图像描述生成研究 下载:47 浏览:441
  • 张凯 李军辉 周国栋 《当代中文学刊》 2019年7期
  • 摘要:
    当前图像描述生成的研究主要仅限于单语言(如英文),这得益于大规模的已人工标注的图像及其英文描述语料。该文探索零标注资源情况下,以英文作为枢轴语言的图像中文描述生成研究。具体地,借助于神经机器翻译技术,该文提出并比较了两种图像中文描述生成的方法:(1)串行法,该方法首先将图像生成英文描述,然后由英文描述翻译成中文描述;(2)构建伪训练语料法,该方法首先将训练集中图像的英文描述翻译为中文描述,得到图像-中文描述的伪标注语料,然后训练一个图像中文描述生成模型。特别地,对于第二种方法,该文还比较了基于词和基于字的中文描述生成模型。实验结果表明,采用构建伪训练语料法优于串行法,同时基于字的中文描述生成模型也要优于基于词的模型,BLEU4值达到0.341。
  • 基于QU-NNs的阅读理解描述类问题的解答 下载:49 浏览:410
  • 谭红叶1,2 刘蓓1 王元龙1 《当代中文学刊》 2019年7期
  • 摘要:
    机器阅读理解是自然语言处理(NLP)领域的一个研究热点,目前大部分的研究是针对答案简短的问题,而具有长答案的问题,如描述类问题是现实世界无法避免的,因此有必要对该类问题进行研究。该文采用QU-NNs模型对阅读理解中描述类问题的解答进行了探索,其框架为嵌入层、编码层、交互层、预测层和答案后处理层。由于该类问题语义概括程度高,所以对问题的理解尤为重要,该文在模型的嵌入层和交互层中分别融入了问题类型和问题主题、问题焦点这三种问题特征,其中问题类型通过卷积神经网络进行识别,问题主题和问题焦点通过句法分析获得,同时采用启发式方法对答案中的噪音和冗余信息进行了识别。在相关数据集上对QU-NNs(Question UnderstandingNeural Networks)模型进行了实验,实验表明加入问题特征和删除无关信息可使结果提高2%~10%。
  • 基于带注意力机制CNN的联合知识表示模型 下载:34 浏览:253
  • 彭敏 姚亚兰 谢倩倩 高望 《当代中文学刊》 2019年6期
  • 摘要:
    知识表示学习在自然语言处理领域获得了广泛关注,尤其在实体链指、关系抽取及自动问答等任务上表现优异。然而,大部分已有的表示学习模型仅利用知识库中的结构信息,无法很好地处理新的实体或关联事实极少的实体。为解决该问题,该文提出了引入实体描述信息的联合知识表示模型。该模型先利用卷积神经网络编码实体描述,然后利用注意力机制来选择文本中的有效信息,接着又引入位置向量作为补充信息,最后利用门机制联合结构和文本的向量,形成最终的联合表示。实验表明,该文的模型在链路预测和三元组分类任务上与目前最好的模型性能相近。
加入编委加入审稿人
当代中文学刊  期刊指标
出版年份 2018-2025
发文量 673
访问量 116872
下载量 36587
总被引次数 342
影响因子 0.882
为你推荐