检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于卷积记忆网络的视角级微博情感分类
下载:
75
浏览:
464
廖祥文1 谢媛媛1 魏晶晶3 桂林2 程学旗4 陈国龙2
《人工智能研究》
2018年6期
摘要:
现有记忆网络模型中的上下文词之间相互独立,未考虑词序信息对微博情感的影响.因此文中提出基于卷积记忆网络的视角级微博情感分类方法,利用记忆网络可以有效对查询词与文本之间的语义关系进行建模这一特点,将视角与上下文进行抽象处理.通过卷积操作对上下文进行词序拓展,并利用这一结果捕获文中不同词语在上下文中的注意力信号,用于文本的加权表示.在3个公开数据集上的实验表明,相比已有方法,文中方法的正确率和宏F1值效果更好.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享