请选择 目标期刊

跨数据源论文集成 下载:44 浏览:332

张帆进 顾晓韬 姚沛然 唐杰 《中文研究》 2018年5期

摘要:
该文研究跨数据源的论文集成问题,旨在将不同数据源中的同一论文匹配起来。该文提出了两个算法来解决论文匹配的问题,第一个算法(MHash)利用哈希算法来加速匹配,第二个算法(MCNN)利用卷积神经网络(CNN)来提高匹配的准确率。实验表明,结合论文的各种属性,MHash能够在快速得到匹配结果的同时,保持较高的准确率(93%+),而MCNN能够达到非常高的准确率(98%+)。同时,设计了一个针对大规模论文匹配的异步搜索框架,在15天内得到了64 639 608对AMiner(1)和MAG(2)论文的匹配结果。论文匹配结果和AMiner、MAG的全部论文数据已作为公开数据集发布(3)。

基于哈希方法的跨模态检索研究进展 下载:63 浏览:412

樊花 陈华辉 《数据与科学》 2018年6期

摘要:
目前大规模数据集的近邻检索引起广泛关注。早期的近邻检索多为同构数据的检索,如以图像检索图像,文本检索文本。但是随着多媒体的发展,信息表达的多样性,数据跨模态检索成为当前研究热点。跨模态检索指在文档有多种模态描述时可从一个模态检索到另一个模态,如以文本检索图像,以图像检索文本等。由于哈希方法的存储开销低和快速有效的特征,广泛应用在跨模态检索中。本文从有监督、无监督和半监督三方面介绍了主要的基于哈希跨模态检索方法,分析了其优缺点,并进行了实验比较。

面向图像检索的深度汉明嵌入哈希 下载:49 浏览:384

林计文 刘华文 郑忠龙 《人工智能研究》 2020年11期

摘要:
深度卷积神经网络学习的图像特征表示具有明显的层次结构.随着层数加深,学习的特征逐渐抽象,类的判别性也逐渐增强.基于此特点,文中提出面向图像检索的深度汉明嵌入哈希编码方式.在深度卷积神经网络的末端插入一层隐藏层,依据每个单元的激活情况获得图像的哈希编码.同时根据哈希编码本身的特征提出汉明嵌入损失,更好地保留原数据之间的相似性.在CIFAR-10、NUS-WIDE基准图像数据集上的实验表明,文中方法可以提升图像检索性能,较好改善短编码下的检索性能.

基于伪成对标签的深度无监督哈希学习 下载:62 浏览:354

林计文 刘华文 《人工智能研究》 2020年6期

摘要:
无监督的深度哈希学习方法由于缺少相似性监督信息,难以获取高质量的哈希编码.因此,文中提出端到端的基于伪成对标签的深度无监督哈希学习模型.首先对由预训练的深度卷积神经网络得到的图像特征进行统计分析,用于构造数据的语义相似性标签.再进行基于成对标签的有监督哈希学习.在两个常用的图像数据集CIFAR-10、NUS-WIDE上的实验表明,经文中方法得到的哈希编码在图像检索上的性能较优.

联合哈希特征和分类器学习的跨模态检索算法 下载:62 浏览:373

刘昊鑫 吴小俊 庾骏 《人工智能研究》 2020年3期

摘要:
为了解决跨模态检索算法检索准确率较低、训练时间较长等问题,文中提出联合哈希特征和分类器学习的跨模态检索算法(HFCL).采用统一的哈希码描述语义相同的不同模态数据.在训练阶段,利用标签信息学习具有鉴别性的哈希码.第二阶段基于生成的鉴别性哈希码,采用核逻辑回归学习各模态的哈希函数.在测试阶段,给定任意一个模态查询样本,利用学习的哈希函数生成哈希特征,从数据库中检索与之语义相关的另一模态数据.在3个公开数据集上的实验验证HFCL的有效性.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享