请选择 目标期刊

面向图像检索的深度汉明嵌入哈希 下载:49 浏览:384

林计文 刘华文 郑忠龙 《人工智能研究》 2020年11期

摘要:
深度卷积神经网络学习的图像特征表示具有明显的层次结构.随着层数加深,学习的特征逐渐抽象,类的判别性也逐渐增强.基于此特点,文中提出面向图像检索的深度汉明嵌入哈希编码方式.在深度卷积神经网络的末端插入一层隐藏层,依据每个单元的激活情况获得图像的哈希编码.同时根据哈希编码本身的特征提出汉明嵌入损失,更好地保留原数据之间的相似性.在CIFAR-10、NUS-WIDE基准图像数据集上的实验表明,文中方法可以提升图像检索性能,较好改善短编码下的检索性能.

基于特征图切分的轻量级卷积神经网络 下载:79 浏览:403

张雨丰1 郑忠龙1 刘华文1 向道红2 何小卫1 李知菲1 何依然1 KHODJA Abd Erraouf1 《人工智能研究》 2019年6期

摘要:
卷积神经网络模型所需的存储容量和计算资源远超出移动和嵌入式设备的承载量,因此文中提出轻量级卷积神经网络架构(SFNet).SFNet架构引入切分模块的概念,通过将网络的输出特征图进行"切分"处理,每个特征图片段分别输送给不同大小的卷积核进行卷积运算,将运算得到的特征图拼接后由大小为1×1的卷积核进行通道融合.实验表明,相比目前通用的轻量级卷积神经网络,在卷积核数目及输入特征图通道数相同时,SFNet的参数和计算量更少,分类正确率更高.相比标准卷积,在网络复杂度大幅降低的情况下,切分模块的分类正确率持平甚至更高.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享